Reduced Risk Approaches to Manage Maggot Pests in Cole Crops in Central Coast

Shimat Joseph¹ (PI) and Larry Godfrey² (Co-PI) ¹UC Cooperative Extension ²UC-Davis UC CE

Chlorpyrifos use in Salinas Valley

Chlorpyrifos use in Salinas Valley

284,541 lb of chlorpyrifos from 2006 to 2010

Cabbage maggot on Brassicas

- Brassica value: > \$485 million
- Brassicas grown: 85,200 acre
 - Broccoli: 60,840 acre
 - Cauliflower: 24,640 acre
- Cabbage maggot (CM) is a major persistent pest of brassica crops in the Salinas Valley of CA
- Majority of *Brassica* acreage is affected by root maggots

- Crop Report 2014

Cabbage maggot injury in cauliflower

Cabbage maggot injury in broccoli

Goals

Little was know about cabbage maggot biology and management in the Central Coast

- 1) Understand the relative susceptibility of crops to maggot attack
- Compare the level of resistance /tolerance present in the commercial cultivars
- 3) Understand the effects of temporal spacing between crops on maggot fly infestation on the successive *Brassica* crop
- Identify effective low-risk active ingredients to maggot pests and their mode of delivery or placement, timing

Goals

- 1) Understand the relative susceptibility of crops to maggot attack
- a) Relative susceptibility of Brassica hosts to Cabbage maggot
- b) Effect of CM infestation on various growth stages of broccoli

Method

- Experiment was conducted in the USDA ARS in Salinas in fall 2013 and 2014
- 3 or 4 crops: turnip, lettuce, and cauliflower were planted side-by-side with broccoli on two seed line in 40inch bed
- Four treatments: turnip: broccoli, lettuce : broccoli, cauliflower : broccoli and broccoli : broccoli (check) were replicated five times in a Randomized Complete Block Design (RCBD)

Method

- Ten soil and plant root samples -
- Eggs and CM infestation starting 3rd week after plant emergence
- Four yellow sticky traps were deployed to monitor activity of maggot fly
- Severity of injury was evaluated using a scale system 0 to 9: 0 = not infested; 9 = severely infested

Root health rating

Eggs

Plants injured

Severity of injury

Summary

- CM flies laid significantly more number of eggs at the base of turnip than broccoli starting third week after planting (WAP)
- During fourth and fifth WAP, number of eggs on turnip was more than twice compared with broccoli
- Severity of cabbage maggot feeding injury was greater on turnip than any crops when broccoli was planted on its side
- On non-host crop (lettuce), number of eggs, injured plants, severity of injury was none or minimum relative to other crops
- Number of eggs, injured plants and severity of injury was lower on cauliflower than any other brassica crops when broccoli was planted on its side

Goals/objectives

- 1) Understand the relative susceptibility of crops to maggot attack
- Compare the level of resistance /tolerance present in the commercial cultivars
 - Vulnerable stage of broccoli to CM
 - Presence of tolerance/ resistance in broccoli and cauliflower varieties

Method

- Direct seeded broccoli (21 Aug 14)
- Plants caged at emergence
- 3 weeks old plants were used
- Five sets of plants were selected for the study
- Sets of plants were inoculated at discrete stage plant development
- Inoculated week interval at 3, 5, 7, and 9 weeks after planting (treatment)
- 15 reps per treatment

Method

- CM larvae (2nd-3rd instars) were field collected
- Inoculation: 15 maggots per plant
- Evaluation: All the plants (all treatments) were evaluated two weeks after final inoculation
- Plant health was monitored using plant health scale up to 5 days following the inoculation

Severity of Injury after 11 WAP

Severity of cabbage maggot injury

Summary

- Plant mortality was greater at 3 WAP infestation treatment
- At 11 WAP, severity of CM feeding injury on roots was not different between 3 and 9 WAP
- Plant health ratings suggested that plant heath deteriorated shapely at 3 WAP

Method- cauliflower

- Five varieties: Nat1, Casper, Symphony, Ravella, Neeblina, Grower standard (Casper)
- Direct-seeded broccoli planted on 40inch beds
- Treatments assigned based on CRBD
- Replicated 4 times
- Samples collected at 14 d interval until harvest
- Evaluation: Incidence and severity of cabbage maggot injury on roots

Severity of injury

Method-broccoli

- Six varieties: Centennial, Marathon, Patron, Imperial, Black Magic, and Heritage
- Direct-seeded broccoli planted on 40inch beds
- Treatments assigned based on RCBD with 4 replications
- Samples collected at 14 or 21 d interval until harvest
- Evaluation: Eggs, larvae and severity of CM injury on roots

Larvae

Severity of Injury

Goals/objectives

- 1) Understand the relative susceptibility of crops to maggot attack
- Compare the level of resistance /tolerance present in the commercial cultivars
- 3) Understand the effects of temporal spacing between crops on maggot fly infestation on the successive *Brassica* crop

Method

- First crop Lettuce (direct seeded)
 - Planted at two week intervals
 - Plot size: ten 40-inch bed × 100 feet
 - Four (plantings) treatments replicated four times in RCBD
- Second crop direct seeded broccoli
 - Planted on all the beds a week after harvesting the last treatment of lettuce

Treatments

Lettuce planting

Т

Soil incorporation of lettuce

	2014			2015	
Harvest date	Days between crops	Broccoli planted	Harvest date	Days between crops	Broccoli planted
1 July	48	18 Aug	24 Jun	49	12 Aug
15 July	33	18 Aug	8 Jul	36	12 Aug
29 July	20	18 Aug	22 Jul	21	12 Aug
11 Aug	7	18 Aug	5 Aug	7	12 Aug

Evaluation

- Number of eggs from 10 plant base (10-cm diameter) per plot every week
- Larvae and severity of CM infestation on roots every week

Larvae

Severity of injury

Summary

- Number of eggs was greater in 7-d than 48-d gap between crops
- Based on severity of injury, 48 days between crops had significantly less severe CM injury than a week
- Number of CM larvae tend to be lower in the greater interval between crops

Goals/objectives

- 1) Understand the relative susceptibility of crops to maggot attack
- Compare the level of resistance /tolerance present in the commercial cultivars
- 3) Understand the effects of temporal spacing between crops on maggot fly infestation on the successive *Brassica* crop
- 4) Identify effective low-risk active ingredients to maggot pests and their mode of delivery or placement, timing
 - Efficacy of insecticides
 - Placement of insecticides

Method

- Crop: Seeded broccoli
- Design: RCBD with 4 times
- Plot size: 50 linear feet two 25 feet long 40" beds (2 lines/bed)
- Seeds planted: 7 August 2013
- Two applications at 3 and 4 WAP

Treatments

Treatment	AI	Amt	Application dates
		formulated/acre	
Entrust	Spinosad	10 fl oz	29 Aug; 5 Sep
Radiant	Spinetoram	10 fl oz	29 Aug; 5 Sep
Movento	Spirotetramat	4 fl oz	29 Aug; 5 Sep
Beleaf	Flonicamid	2.8 oz	29 Aug; 5 Sep
Belay*	Clothianidin	6 fl oz	7 Aug; 29 Aug; 5 Sep
Actara	Thiamethoxam	6.5 oz	29 Aug; 5 Sep
Verimark	Cyantraniliprole	13.5 fl oz	29 Aug; 5 Sep
Dimilin	Diflubenzuron	4 fl oz	29 Aug; 5 Sep
Trigard	Cyomazine	2.66 oz	29 Aug; 5 Sep
Теа	Vermiculture	50 v/v	29 Aug; 5 Sep
Root power	-	16 fl oz	29 Aug; 5 Sep
Lorsban	Chlorpyrifos	2.75 fl oz	29 Aug; 5 Sep
Untreated check	-	_	29 Aug; 5 Sep

*at planting

Results: Severity (5 WAP)

F = 2.2;df = 12, 36; *P* = 0.036

Results: Severity (7 WAP)

Sampled: 12 Sep; planted: 7 Aug

F = 4.1;df = 12, 36; *P* = 0.001

Comparison of application methods

Treatment

- 1 No insecticide
- 2 Insecticide in drip
- 3 Seed treatment + insecticide in drip
- 4 Seed treatment only
- 5 Spray at plant + insecticide in drip
- 6 Spray at plant only

Methods

- Insecticide Belay (clothianidin)
- Sprayed: two applications
 - at plant (8 fl oz/acre)
 - delayed (4 fl oz/acre)
- Seed treatment Nipslt
- Chemigation Belay

Delayed application – 12 fl oz /acre

- -6 weeks after planting: Experi. 1
- 3 weeks after planting: Experi. 2

Experiment 1 – larvae

Experiment 1 - Severity

Experiment 2 – larvae

Experiment 2 – Severity

Seed treatment

Active ingredient	Appli. rate / seed
Clothianidin A	0.750 mg
Clothianidin B	1.170 mg
Clothianidin C	1.680 mg
Thiamethoxam	1.160 mg
UTC	

Seed treatment

Severity of cabbage maggot infestation

- Seed treatment suppressed cabbage maggot infestation on broccoli
 a
- More research is needed to validate the utility of chemigation b through drip irrigation for cabbage maggot control

Overarching results

- Trap cropping with turnip (especially in perimeter planting) could reduce CM injury severity on main crop
- Early phase of broccoli is more vulnerable to CM injury than later stages
- Commercial broccoli and cauliflower varieties did not show any evidence of resistance or susceptibility
- Extended fallow period between crops reduced CM injury on broccoli
- Among insecticides, clothianidin was the most effective insecticide compared with other insecticides
- Seed treatment of clothianidin suppressed CM infestation on broccoli

Acknowledgements

- Growers, Pest Control Advisers, students
- Grant managers: Patricia Matteson,

Basil Ibewiro, Matt Fossen

- Christine Uhrik
- Funding:
 - California Department of Pesticide Regulation

