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Findings  on the Health Effects of Chlorpyrifos  Relevant to Its Identification  
as a Toxic  Air Contaminant  

Office of Environmental Health Hazard Assessment 
California Environmental Protection Agency 

December 2017 

Pursuant to Food and Agriculture Code Sections 14022 and 14023, the Office of 
Environmental Health Hazard Assessment (OEHHA) of the California Environmental 
Protection Agency (CalEPA) provides consultation and technical assistance to the 
Department of Pesticide Regulation (DPR) on the evaluation of health effects of 
pesticides that are candidate toxic air contaminants (TAC).  DPR has developed the 
following document, currently in draft form, for use in considering whether to identify 
chlorpyrifos as a TAC: 

DPR, 2017a.  Evaluation of Chlorpyrifos  as a Toxic Air Contaminant: Risk  
Characterization of Spray Drift, Dietary, and Aggregate Exposures to Residential  
Bystanders.  Hereafter this  document  is referred  to as the “ draft TAC  document.”  

Food and Agricultural Code Section 14023 also requires that OEHHA prepare its own 
findings on the health effects of chlorpyrifos, the availability and quality of health-effects 
data, and levels of exposure that may result in adverse health effects. This document 
contains OEHHA’s findings and is part of DPR’s submission to the Scientific Review 
Panel for its evaluation. OEHHA used the draft TAC document as its primary reference 
and has included commentary on it.  Additional documents and studies cited in these 
findings are listed in the References Section. 

Under the Toxic Air Contaminant Identification and Control Act (AB 1807, Chapter 1047, 
Statutes of 1983) and its implementing regulations (Title 3, California Code of 
Regulations, Section 6864), one of the criteria for identifying a pesticide as a TAC is if 
its concentration in the air exceeds one-tenth of the level that has been determined to 
be adequately protective of human health. The draft TAC document shows that 
bystanders can be exposed to modeled air concentrations of chlorpyrifos that exceed 
one-tenth the protective level, and thus meet the criteria for TAC identification. 
OEHHA’s findings below serve to reinforce this overall conclusion, and further support 
the identification of chlorpyrifos as a TAC. 
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Chemical Identification 

1. Chlorpyrifos (CPF; O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) is a 
broad-spectrum, chlorinated, organophosphate (OP) insecticide, acaricide, and 
miticide.  It is used to control targeted pests in food commodities (e.g., nut trees, 
fruits, vegetables, and grain crops), as well as in non-food crops. 

Usage and Environmental Fate 

2. CPF use in California has been approximately 1.1 to 1.5 million pounds per year in 
recent years.  CPF use is greater in the summer months, and applications to 
almonds, alfalfa, walnuts, oranges, and cotton account for more than two-thirds of 
the total poundage applied (DPR, 2016, 2017a). 

3. After application, CPF dissipates by volatilization, photolysis, abiotic hydrolysis, and 
microbial degradation.  CPF in air and on foliar surfaces can be degraded to the 
toxicologically active form, chlorpyrifos-oxon (CPFO), by photolysis and oxidation 
within hours.  In field studies, CPF post-application volatilization losses were highly 
variable, ranging from 4.5-71% during the first 24 hours (US Environmental 
Protection Agency, US EPA, 2013a).  The extent of spray drift that potentially 
exposes bystanders (not those involved in the application of the pesticide, but in the 
vicinity of the application site) depends on application methods, equipment settings 
and conditions, and wind velocity. 

Reported Illnesses 

4. The most commonly reported symptoms for CPF-associated pesticide illness cases 
during 2004-2014 were systemic symptoms (including headache, nausea and 
dizziness), eye irritation, and respiratory complaints (breathing difficulties, cough, 
and irritation of throat) (DPR, 2017b).  Nearly 90% of these cases were for 
bystanders (workers or residents near the application site). 

Metabolism and Pharmacokinetics 

5.  CPF is almost completely absorbed through the oral route in rats and humans.   The 
extent of dermal and inhalation absorption is  estimated  from inhibition of  
acetylcholinesterase (AChE) activities and urinary recovery of  metabolites.  In both 
animals and humans,  CPF is extensively metabolized by cytochrome P450 enzymes  
(CYP), including to its  active oxon metabolite CPFO  and urinary metabolite 3,5,6-
trichloro-2-pyridinol (TCPy). The key reactions are:  

a. Activation of CPF → CPFO by CYP2B6 and CYP3A4/5 
b. Detoxification of CPF → TCPy by CYP2C19 and CYP3A4/5 
c. Detoxification of CPFO → TCPy by paraoxonase 1 (PON1) and β-

esterases  
(butyrylcholinesterase and carboxylesterases) 
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The balance between CPF activation and detoxification is influenced by factors such 
as species, gender, age, and polymorphism of key metabolic enzymes (e.g., CYP 
and PON1) (Ma and Chambers, 1994; Ginsberg et al., 2009; Wason et al., 2012).  
The variation of these factors across a population contributes to the inter-individual 
variability in response to CPF exposures. 

6. CPF has been detected in rat and human milk.  In pregnant rats, CPF crosses the 
placenta as evidenced by the detection of CPF in fetal liver, brain, blood, placenta, 
umbilical cord, and amniotic fluid, and the inhibition of fetal plasma, red blood cell 
(RBC), brain, and heart cholinesterase (ChE). In rats, low levels of CPFO was 
detected in the blood samples of fetuses on a day of maternal exposure to CPF. 

Toxicological Effects of CPF and Critical Endpoints for Risk Assessment 

7. AChE is found at the synaptic clefts in the central and peripheral nervous systems, 
at neuromuscular junctions, and in some non-neuronal cells such as RBCs. When 
CPFO covalently binds the active site of AChE, it prevents AChE from hydrolyzing 
the neurotransmitter acetylcholine (ACh). The accumulation of ACh in synaptic 
clefts results in excessive stimulation of the peripheral and central nervous systems.  
The reduction of AChE hydrolysis activity is an early indicator of toxicity.  At higher 
doses, acute signs of poisoning are salivation, lacrimation, urination, defecation, 
slurred speech, tremors, ataxia, convulsion, as well as depression of respiratory and 
circulatory centers. 

8. Since blood is more readily available than brain tissue and RBC AChE activity is a 
sensitive marker of systemic AChE inhibition, RBC AChE activity is often used as a 
surrogate for inhibition of AChE activity in the nervous system. 

Following an acute oral exposure in three groups of rats, RBC AChE was found to 
be more sensitive to CPF than brain AChE, and the postnatal day (PND)11 pups 
appeared more sensitive than the adult to RBC AChE inhibition (Marty et al., 2012; 
Table 1).  The study did not find an age difference for brain AChE inhibition. 

Table 1. Percent change of RBC and brain AChE activities following acute oral 
gavage exposure of PND11 pups and adults to CPF. 

Compartment Dosea Male 
PND11 pup 

Female 
PND11 pup Adult female 

RBC 0.5 mg/kg -5% -1% +10% 
2 mg/kg -36%* -31%* -19%* 

Brain 0.5 mg/kg +11% +3% -5% 
2 mg/kg -2% -7% -5% 

a From Marty et al. (2012) for CPF given in corn oil. Doses shown are those that were tested in both 
pups and adults and which induced ≥1% inhibition in at least one group. 

* Significantly different from control at alpha = 0.05 using Dunnett’s test of raw ChE data. N = 8 
animals/group 
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9. There are numerous animal and human studies showing exposure to CPF is 
associated with developmental neurotoxicity (DNT).  In some rat and mouse studies, 
CPF exposure during gestation and postnatal periods was found to cause DNT 
effects on cognition, anxiety, social behavior, and motor activity.  OEHHA’s review of 
the DNT observations from a registrant study (Hoberman, 1998) and those in recent 
literature are presented in Table 2.  In some studies, these DNT effects were 
observed at doses that elicit minimal or no brain AChE inhibition.  The recent animal 
studies incorporated low doses in the study design, which provide the basis for 
improved dose-response relationship analysis. 

Table 2. Selected developmental neurotoxicity studies in animals with multiple doses 
of CPF. 

Study 
Species 
Exposure period 

Administered 
Dosesa 

Dose for 
Observed Effects 

Observed Effect at Low 
Dose in Offspring 

Hoberman, 
1998 

Rat 
Dam: GD6-LD11 

0, 0.3, 1.0, 5.0 
mg/kg-day 1 mg/kg-day 

↓ Parietal cortex 
thickness in PND66 
females 

Silva et al., 
2017 

Rat 
Dam: GD14-20 
(only male pups) 

0, 0.01, 0.1, 1, 
10 mg/kg-day 0.1 mg/kg-day 

↑ Anxiety and ↑ 
locomotor activity at 
PND21 males 

Gómez-
Giménez et al., 
2017a 

Rat 
Dam: GD7-
PND21 

0, 0.1, 0.3, 1 
mg/kg-day 0.1 mg/kg-day 

↓ Spatial learning in 
Morris Water Maze in 
adult males 

Gómez-
Giménez et al., 
2017b 

Rat 
Dam: GD7-
PND21 

0, 0.1, 0.3, 1 
mg/kg-day 0.1 mg/kg-day 

↑ Locomotor activity in 
2-3 month old males 
and females 

Lee et al., 2015 Mouse 
PND10 male 

0, 0.1, 1.0, 5 
mg/kg 0.1 mg/kg-day ↑ Total activity at 

PND60 males 

Carr et al., 2017 Rat 
PND10-16 

0, 0.5, 0.75, 1.0 
mg/kg-day 0.5 mg/kg-day 

↓ Time to emergence 
into novel environment 
in PND25 males and 
females 

a All studies conducted via oral gavage with corn oil except for Gómez-Giménez et al. (2017a and b), 
which administered CPF in corn oil mixed in a sweet jelly. 
Abbreviations: GD, gestation day; LD, lactation day; PND, postnatal day. 

With regard to humans, there are three major prospective birth cohort studies 
conducted by: Columbia University, Mount Sinai Hospital (in New York City), and 
University of California, Berkeley. All three studies showed an association between 
exposure to OP pesticides during pregnancy and adverse neurodevelopmental 
outcomes such as changes in brain morphology, delays in cognitive (working 
memory) and motor functions, problems with attention, and tremors. 
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Many in vitro studies with zebrafish show that exposure to CPF resulted in abnormal 
behavior and inhibition of AChE activity. Zebrafish requires a certain level of AChE 
for normal neurodevelopment, and is often used as a model for DNT studies. 

Many plausible mode of actions or adverse outcome pathways for CPF-induced 
DNT effects have been suggested, as outlined in US EPA (2014), but there is no 
definitive conclusion. 

On November 29, 2017, the state’s Proposition 65 Developmental and Reproductive 
Toxicant Identification Committee determined that CPF has been clearly shown to 
cause developmental toxicity, after considering the human studies and many animal 
studies showing DNT subsequent to CPF exposure.  As a result of the committee’s 
determination, chlorpyrifos will be added to the Proposition 65 list effective 
December 15, 2017. 

Taken together the human and animal studies show that CPF causes DNT, although 
the human data pose challenges for dose-response assessment because of 
uncertainty in the exposure assessment in the studies. A thorough analysis of the 
DNT literature for CPF is needed to determine if it can be used directly for dose-
response characterization in the risk assessment of CPF. 

Outcomes of developmental toxicity of CPF besides DNT have been observed in 
rats, mice, and rabbits. When exposed during gestation by the oral route, CPF 
caused fetal effects such as increased post-implantation loss, decreased crown-
rump length, delayed ossification, and reduced fetal body weight.  Most of these 
effects were observed at the same or higher doses than those causing maternal 
toxicity. The lowest No-Observed-Adverse-Effect Level (NOAEL) for these effects 
was 2.5 mg/kg-day in fetal rats (Rubin, 1987). The maternal toxicity included 
inhibition of plasma and RBC AChE, cholinergic signs, reduction of food 
consumption, and decreased body weight. In a two-generation reproductive toxicity 
study in rats, CPF did not cause adverse reproductive effects in the offspring. 
Slightly reduced pup weights and pup survival were observed at the highest dose 
tested, a dose (5 mg/kg-day) which was higher than that causing RBC AChE 
inhibition (1 mg/kg-day) in the parental rats. 

DNT endpoints appear to be more sensitive than the other developmental endpoints 
that have been observed in these guideline developmental and two-generation 
reproductive toxicity studies. 

10. The respiratory effects of CPF may provide potential critical toxicity endpoints, and 
should be considered as such in the DPR analysis.  Respiratory effects are the most 
commonly reported symptoms in bystanders in DPR’s pesticide illness report (DPR, 
2017b). There is additional evidence of CPF-induced respiratory effects in 
agricultural workers.  Among farmers in an epidemiological study evaluating the 
impact of pesticide exposure - the Agricultural Health Study - the OP insecticides 
(CPF, malathion, and parathion) were positively associated with wheeze; for the 
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commercial applicators, the OP insecticides (CPF, dichlorvos, and phorate) were 
positively associated with wheeze (Hoppin et al., 2006). Exposure to CPF was 
strongly associated with wheeze in a dose-dependent manner in both groups. 

Bystanders may be children, and the developing lungs of young children and those 
with respiratory problems can be more sensitive to CPF exposure due to various 
factors, including lung structure and limited detoxification capacity. The respiratory 
architecture of the developing lung is characterized by a much lower surface area 
compared with adults, resulting in an approximately 2-fold increase in respiratory 
tract exposure (per unit surface area) to particulates (Ginsberg et al., 2004; de Zwart 
et al., 2004; Sarangapani et al., 2003). 

The metabolic capacity of the developing lung is also much lower than that of the 
adult. The majority of differentiation activity of pulmonary xenobiotic metabolizing 
enzyme systems occurs for an extended period of time after birth (Fanucchi, 2014). 
For example, CYP gene expression was found to be much greater in the adult 
versus fetal human lung (Choudhary et al., 2005).  Lung carboxylesterase activity in 
neonatal (PND7) and juvenile (PND21) rats was estimated to be 27% and 64% that 
of the adult (PND90) (Karanth and Pope 2000).  CPFOase (PON1 activity using 
CPFO as the substrate) in the neonatal (PND7) and juvenile (PND21) rat lung was 
about 8-fold and 1- to 1.8-fold lower than adult (PND90) levels, respectively (Karanth 
and Pope, 2000). These differences may lead to higher CPFO in the lungs of infants 
and children compared with adults. 

11. In the review of genotoxicity assays in the draft TAC document, CPF was found to 
be largely negative, with some positive effects found in yeast and bacteria.  OEHHA 
notes that there are additional studies in the literature and should be considered in 
the overall evaluation of genotoxic potential of CPF, not only for oncogenicity 
concern, but also for other effects such as neurotoxicity (Muller et al., 2014). 

12.CPF was reported not to cause cancer in two pesticide registration studies in rats 
and one in mice. One study in dogs was of too short duration (2 years compared to 
an average lifetime of 14 years) to be considered an adequate test of 
carcinogenicity. The carcinogenicity of CPF has not been well studied in 
epidemiological studies.  Currently, CPF is not considered a carcinogen by the US 
EPA and DPR, and has not been evaluated for carcinogenicity by the International 
Agency for Research on Cancer (IARC) or California’s Proposition 65 Carcinogen 
Identification Committee. OEHHA concurs with the approach of using non-cancer 
endpoints as the basis for the risk assessment of CPF at this time. 

Dose-Response: Derivation of Points of Departure 

13.For all exposure scenarios evaluated in the draft TAC document, the critical toxicity 
endpoint used is 10% inhibition of RBC AChE. While AChE inhibition is a sensitive 
toxicity endpoint, other endpoints such as DNT and respiratory toxicity endpoints 
may be more sensitive, as discussed in Findings 9 and 10 above. 
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14.The point of departure (POD) is the starting point of a low-dose extrapolation and is 
used to determine the health risk associated with a certain exposure level. The 
PODs for all exposure routes and durations and sensitive populations were 
developed by DPR using a physiologically-based pharmacokinetic and 
pharmacodynamic (PBPK-PD) model. This model was developed by the registrant 
and used by US EPA for deriving the PODs for RBC AChE inhibition in its 2014 
Human Health Risk Assessment (US EPA, 2014). 

The PBPK-PD model estimated the air concentration or dose (dermal and oral) for 
10% RBC AChE inhibition. For the residential bystander exposure scenarios, the 
PODs used to evaluate the risks are listed in Table 3. For inhalation, dermal, and 
incidental oral exposures, the steady state PODs were used in risk characterization. 
The use of the lower PODs in the draft TAC document, compared to the higher 
acute PODs, was said to compensate for background exposure to CPF. OEHHA 
finds that this is a conservative approach, but notes that it may add uncertainty to 
the risk estimate. 

OEHHA notes that for inhalation exposure, the exposure expressed as air 
concentration is lower for children than females (13-49 years old).  However, the 
exposures in terms of dose (mg/kg-day) are similar, when the DPR’s default 
breathing rates are used for the conversion. On the other hand, the dermal POD for 
children is more than 5-fold higher than that for females (13-49 years old).  An 
explanation for the biological basis for the differences in the magnitude of PODs 
would be helpful to support their use in the risk characterization. 

Table 3. PODs used for the risk characterization of residential bystander exposures 
Exposure routes Duration Children 

1-2 years olda 
Females 
13-49 years olda 

Inhalation (CPF) Steady state 2370 µg/m3 

1232 µg/kg-dayb 
6150 µg/m3 

1722 µg/kg-dayb 

Dermal (CPF) Steady state 134250 µg/kg-day 23600 µg/kg-day 
Incidental Oral (CPF) Steady state 101 µg/kg-day NA 
Food (CPF) Acute 581 µg/kg-day 467 µg/kg-dayc 

Water (CPFO) Acute 159 µg/kg-dayc 129 µg/kg-dayc 

a Values are from Summary Table 1 of draft TAC document. 
b OEHHA’s conversion to dose using DPR’s  default breathing rates of 0.52 m3/kg-day  and 0.28 

m3/kg-day for children and  adults, respectively, for comparison purpose.   
c  Converted from ppb unit  as shown in Table  54  of  draft TAC  document.  
Abbreviations: NA=not applicable  
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Inhalation component of the PBPK-PD model 

15.Overall PBPK-PD model application, construction and validation as well as the 
uncertainty and variability of the outputs are discussed in Findings 22 and 23 below. 

There is uncertainty associated with the steady state inhalation PODs derived due in 
part to the difference in the physical characteristics of CPF between the inhalation 
model and the bystander exposure and the lack of model validation. 

Inhalation exposure is the primary route of exposure from spray drift due to aerial, 
ground boom, and air blast applications, as noted below (Finding 16).  In both the rat 
inhalation and human inhalation models, CPF was modeled as dry particles with 
relatively small sizes and assumed to be mostly (>90%) absorbed in the 
gastrointestinal tract following deposition in the respiratory tract and mucociliary 
clearance. The inhalation PK data of the PBPK-PD model were derived from an 
acute inhalation study in rats using dry particles in the respirable range (<10 µm) 
(Hotchkiss et al., 2010). 

In contrast,  the bystander’s inhalation exposure to CPF, as predicted by  the 
AGricultural DISPersal (AGDISP™) model, is  a spray drift cloud comprised of aerosol  
droplets  of varying sizes that continually change as the cloud travels away from the 
application target.  As larger droplets  drop out, the cloud would have a greater 
portion of  smaller droplets.  The bystander at  less  than 25 feet  from the application 
was estimated to be exposed to mostly “medium” and “coarse” spray droplets  
(Grisso et al., 2013).  “Medium”  and “coarse”  are defined as  droplets with diameters  
of 240  µm  and 400 µm, respectively.   Due to their large sizes, most  of these droplets  
are expected to be deposited in the upper respiratory tract and absorbed in situ.   
Even if some of the smaller droplets reach the lower respiratory tract, they are likely  
to be absorbed in situ and not likely to be moved by the mucociliary mechanism and 
enter the gastrointestinal tract.  In both cases, local effects  of CPF  on the upper  and  
lower respiratory tracts would be a concern.   

Finally, the steady state outputs of the inhalation component of the PBPK-PD model 
have not been validated. There are no subchronic inhalation animal or human 
toxicity data suitable for this purpose.  Although there are three subchronic inhalation 
toxicity studies conducted in rats (Newton, 1988; Corley et al., 1986; Landry et al., 
1986), they cannot be used because the main reported effect was inhibition of 
plasma ChE; RBC and brain AChE were not inhibited. 

Residential Bystander Exposure Assessment 

16.Residential bystanders who are adjacent to a pesticide application are exposed to 
airborne CPF due to drift during or after the application. The draft TAC document 
assumed this was for 1 to 1.5 hours per day for 21 days. The scenarios evaluated in 
the draft TAC document are summarized in Table 4. The draft TAC document found 
that inhalation exposure contributed up to 95% of the total aggregate risk and 
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contributions from exposures via diet and drinking water were minor. The spray drift 
and dietary aggregate exposure assessment was conducted only for children 1-2 
years old, but not females (13-49 years old).  While children often have the higher 
intake on a body weight basis, it is not clear from the draft TAC document whether 
the children group is the more sensitive group. 

Table 4. Bystander exposure scenarios from spray drift of CPF. 
Exposure Scenarios Children 

1-2 Years Old 
Females 
13-49 Years Old 

Spray drift only 
Individual routes and all routes 
(Aggregate exposure) 

Inhalation, dermala, 
incidental oral 

Inhalation, 
dermala 

Spray drift and dietary aggregate 
exposure 

All routes for spray drift plus 
CPF in food and to CPFO in 
the drinking water. 

Not assessed 

a Dermal- skin contact with airborne deposits on lawns or other outdoor surfaces. 
b Incidental oral- transfer of residues from object (ie. a toy) to mouth, from hand to mouth, and from 

ingestion of soil. 

17.Three application methods were considered in the draft TAC document: aerial, 
ground boom, and air blast. A bystander can be exposed to CPF in air and after it 
has deposited on soil or vegetation surfaces. 

a. For aerial applications, DPR used the AGDISP™ model for predicting 
downwind deposition of CPF residues.  The model was also used to estimate 
one-hour time-weighted average (1-hour TWA) aerosol concentrations at 
specific downwind distances and receptor heights. 

b. For ground boom and air blast applications, DPR used the AgDRIFT® model 
to predict downwind deposition of CPF residues. This model uses empirical 
data from a limited number of field trials to estimate droplet deposition. The 
AgDRIFT® model cannot predict aerosol concentrations in air.  Instead, DPR 
applied “reasonable worst-case” inputs for AGDISP™ to generate air 
concentrations to predict aerosol concentrations from aerial application and 
used them as “surrogate” aerosol concentrations for ground boom and air 
blast applications in the evaluation of inhalation exposure (DPR, 2017a). 

OEHHA agrees that  use of  the surrogate aerosol concentrations  (62-101 µg/m3) are 
appropriate because they  are similar to  air monitoring data by the California Air  
Resources Board (60-81 µg/m3)  when adjusted for  distance from the field.   These 
concentrations are likely conservative estimates  for ground boom applications.   
However,  they  could be  underestimates from  air blast applications under some 
scenarios  as  more spray drift (higher concentration) may occur when little or  no 
foliage is present.    
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18.The exposure estimates in the draft TAC document were determined for bystanders 
at various distances from the application site. Examples of dermal doses and 
predicted air concentrations for the application methods and receptors used in risk 
characterization are shown in Table 5.  At a fixed distance and application method, 
children’s dermal and inhalation exposure estimates are higher than those of 
females (13-49 years old). 

Table 5.  Comparison of dermal and inhalation exposures for bystanders. 

Receptors Exposure 
Route 

Exposure at a Downwind Distance of 
25 feet from the Treated Field 

Aerial Air Blast Ground Boom 
Exposure (µg/kg/day) 

Children 
1-2 years old Dermal 69.55a 61.27b,c 10.52b,d 

Females 
13-49 years old Dermal 47.45a 41.80b,c 7.17b,d 

Maximum 1-Hour Air Concentration (µg/m3) 
Children 
1-2 years old Inhalation 52.6a 104.2e 104.2e 

Females 
13-49 years old Inhalation 39.4a 78.1e 78.1e 

All values are from the cited tables in the Draft TAC document. 
a AGDISP™ model, AT802, 2 gallons/acre, 2.3 lbs/acre (Tables 27 and 28) 
b AgDRIFT® empirical model, 6 lbs/acre (Tables 29-32) 
c 60 swath, dormant apples, 6 lbs/acre (Tables 29 and 32) 
d 40 swath, 50th percentile deposition, high boom, 6 lbs/acre (Tables 29 and 30) 
e Surrogate air concentrations from AGDISP™ (Table 33 for 6 lbs/acre) 

For evaluating child exposures to deposited residues, dermal and incidental oral 
ingestion exposure estimates were appropriately calculated from predicted surface 
deposition using standard assumptions and algorithms developed for contact with 
pesticide residues on turf (US EPA, 2012; US EPA, 2013b; DPR, 2017a). 

19.There is a potential residential bystander exposure to CPF vapor produced by the 
deposited CPF aerosols.  CPF is considered to be semi-volatile and has a relatively 
low vapor pressure at 25°C.  In some regions of California where CPF use is high, 
summer daytime temperatures routinely reach or exceed 100ºF and this could turn 
the deposited aerosol material to a source of CPF vapor.  For bystanders close to 
the application site, the concentration of CPF vapor is likely to be much lower than 
that of CPF aerosol in the first hour following application.  However, compared to the 
exposure to aerosol, the exposure duration to the vapor can last many hours after 
the application has ended. 

20.Another potential exposure pathway for CPF is take-home dust (dust from an 
outside source).  DPR used the highest reported CPF residue level in house dust 
sampled in farming communities in the Salinas Valley after the residential use ban 
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(Bradman et al., 2007) and chose children 0 < 2 years of age as the most vulnerable 
life stage for inadvertent ingestion due to hand-to-mouth activity.  The evaluation 
assumed an ingestion rate of 40 mg/kg-day (OEHHA, 2012) and an absorption rate 
of 100%, and showed such exposure would not induce more than 10% RBC AChE 
inhibition. However, OEHHA notes that DNT appears to be a more sensitive 
endpoint, as discussed above.  OEHHA concurs with the conclusion that the 
exposures associated with this scenario are relatively low. 

Risk Characterization 

21.For non-cancer effects, the risk expressed as margin of exposure (MOE) is the 
appropriate approach. It is the ratio of the POD to the estimated human exposure 
level.  For aggregate exposure, the overall MOE was determined by combining the 
MOEs of the individual routes.  DPR selected a value of 100 as the target MOE; 
exposure with an MOE at or above this level is considered protective against CPF 
toxicity.  This value was determined using three uncertainty factors (UF): 1 for 
interspecies extrapolation, 10 for intraspecies variability, and 10 for potential DNT 
effects. The interspecies and intraspecies UFs each consist of pharmacokinetic 
(PK) and pharmacokinetic (PD) components. 

OEHHA recommends a higher target MOE of 1,000: 3 for interspecies extrapolation, 
30 for intraspecies variability, and 10 for potential DNT effects.  The basis of this 
recommendation is discussed in Findings 22-24 below. 

22.An interspecies UF of 3-fold should be applied because there are uncertainties in the 
output of the PBPK-PD model: not all model parameters were derived from human 
studies, differences between the nature and location of absorption of particles in the 
model and the residential bystanders, and the model has not been adequately 
validated for human steady state exposures. 

Limited human subject data are available for model development and validation. 
Between the Nolan et al. (1982, 1984) and Kisicki et al. (1999) studies, only one 
subject exhibited significant RBC AChE inhibition. The following is a summary of the 
studies. 

Nolan et al. (1982,19841)  
Six healthy male volunteers were given an oral dose of 0.5 mg/kg CPF on a lactose 
tablet.   TCPy in blood and urine, CPF in blood, and ChE activities in plasma and 
RBC were measured at various time points.   After 30 days, the subjects were again 
dosed with 5.0 mg/kg by the dermal route.   The following model parameters were 
sourced directly from the Nolan study: intestinal absorption of CPF to the liver,  
dermal absorption rate, elimination rate for  TCPy, and transfer rate of CPF  from  
stomach to intestine.   Plasma ChE was inhibited only after oral exposure, but RBC 
AChE was not inhibited by either route  by any individual.  

1 Nolan et al., 1984 is the published version of Nolan et al., 1982. 
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Kisicki et al. (1999) 
Volunteers (6 male, 6 female) were administered a single oral dose of 0.5, 1, or 2 
mg/kg CPF powder in capsules.  Blood and urine were collected and CPF, CPFO, 
and TCPy levels, and RBC AChE activity were measured.  The transfer rate of CPF 
from stomach to intestine from the Nolan et al. (1982, 1984) study was adjusted 
using the Kisicki data due to differences in the dosing formulations. Only one 
subject (female) at 2 mg/kg-day had RBC AChE inhibition, but she showed 
unusually high absorption of CPF (87.9% versus a mean of 29.5%). 

The lack of AChE inhibition in these two studies brings into question the suitability of 
these studies for parameterization and validation of a PBPK-PD model in which RBC 
AChE inhibition is the critical endpoint. The model results for oral exposure were 
largely validated with one acute oral in vivo human study conducted in adults (Kisicki 
et al., 1999).  For the dermal component of the model, the acute Nolan et al. (1982, 
1984) study was used in part to parameterize the model for dermal exposures, and 
was used in addition to the acute Vaccaro et al. study (1993) to validate the model. 

Vaccaro et al.  (1993)   
Adult subjects  - males and non-pregnant females  (n=7; ages  21-55) were exposed 
to CPF after EmpireTM  20 insecticide (encapsulated CPF in water) was applied to the 
carpet in two apartments.  After application,  four subjects were assigned to 
apartment #1 and three different subjects were assigned to apartment #2.   Each 
volunteer (dressed in T-shirt and shorts) was asked to crawl, roll, or lie on the carpet  
for 4 hours to simulate a child’s activity on the carpet.  Air samples near the 
volunteers showed TWA of  11.4 mg/m3  in Apartment #1 and 5. 53 mg/m3  in  
Apartment #2.  It should be noted that the EmpireTM  20 insecticide formulation is  
special in that CPF was encapsulated in a polyurea shell and is intended to be a 
slow  release formulation.   When compared to non-encapsulated CPF, the  
EMPIRETM  20 formulation exhibits lower peak air concentrations (by ~4-fold) and  
much higher oral  and dermal  LD50  values.    

The Vaccaro et al. study also provided human inhalation PK data to validate the 
model. As noted above, there is uncertainty in the data because of the formulation 
used and because the volunteers were exposed to CPF by both dermal and 
inhalation routes. 

23.An intraspecies UF of 30 is needed to fully account for the potential variability in both 
PK and PD in the human population. An UF of 10 is not sufficient as the PBPK-PD 
model did not fully account for physiological, anatomical, and biochemical changes 
during pregnancy and among different age groups.  As DPR noted, sensitive 
parameters related to metabolic clearance of CPF and CPFO were based on data 
from a small number of plasma and liver postmortem tissues (Smith et al., 2011) 
(Table 6), and metabolic activities between live and preserved human microsomes 
may not be concordant. 
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Table 6.  Number of in vitro samples used in deriving model input parameters, by 
age groups. 
Tissuesa Infants 

< 1 year old 
Children 
1-2 years old 

Children 
3-17 years old 

Adult 
≥ 18 years 

Plasma 10 1 6 3 
Liver 8 5 8 9 

a From Smith et al. (2011). Total of 20 plasma samples from 0.01 to 46 years old and total 
of 30 liver samples from 0.04 to 75 years old. 

The draft TAC document described the derivation of Data Derived Extrapolation 
Factors (DDEF) for acute oral exposure in humans by Poet et al. (2017). The DDEF 
in this case was defined as the ratio between the oral doses for 10% RBC AChE 
inhibition for the median individual (50th percentile) and the sensitive individual 
(e.g.,1st percentile).  The different percentiles were calculated by varying 
pharmacokinetic variables in the PBPK-PD model, as described below. Poet el al. 
found the calculated DDEFs are not large for different age groups: adult (3.4), 
infants (3.6), non-pregnant female (3.4), and pregnant female (2.9). These DDEF 
estimates are used to justify the intraspecies UF of 10 in the draft TAC document. 

OEHHA is concerned about the small sample size in the raw data and the reliability 
of the method that was used to extend the variability range of the parameters.  Using 
sensitivity analysis, Poet et al. determined that four key metabolic enzymes 
contributed over 80% of the variability in the model output. The four enzymes are 
CYP450 to TCPy, CYP450 to CPFO, hepatic PON1, and plasma PON1.  Because 
there are very few age-specific in vitro tissue samples for these enzymes (Table 6), 
Poet et al. extended their ranges by using a boot strap method, assuming the four 
parameters are log-normally distributed, and conducting Monte Carlo simulations. 
However, OEHHA notes that it is unlikely that the few samples of a given enzyme in 
Smith et al. (2011) can cover the full range of values within a given age group, 
especially at the tail ends of a distribution.  For this reason, there are uncertainties in 
the mean and range estimated for the log-normal distributions.  It is not clear that by 
extending the ranges of these four sensitive enzymes, to what extent was Poet et al. 
able to address the limitation of the dataset in Smith et al. (2011). 

In addition, there is a need to account for the variability in the PD aspect of the 
PBPK-PD model for RBC AChE inhibition. The reported coefficient of variation 
(CVs) for the parameters (i.e., inhibition rate, degradation rate, reactivation rate) 
describing RBC AChE inhibition are relatively small, between 0.14 and 0.36 (Poet et 
al., 2017). For example, the inhibition rate was derived from Dimitriadis and Syrmos 
(2011). While the sample size was large (n=306), it consisted of only adult male 
hazardous material team workers and support staff.  It is unclear how representative 
these mean and CV values are for the general population. 

RBC AChE activity varies with age, pregnancy, and even between healthy adults. 
Newborn infant RBC ChE activity was reported to be only half that of adult activity 
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(Miyazono et al., 1999; Vlachos et al., 2010). Adult activity was only reached by 4 
months to 1 year of age (Karlsen et al., 1981; Ecobichon and Stephens, 1973). 
Hematocrit was reported to decrease over pregnancy (Cunningham, 2010; Abduljalil 
et al., 2012), with a concomitant decrease in RBC AChE specific activity. 

Thus, OEHHA believes the intraspecies UF of 10-fold should be at least 30-fold to 
capture the full range of PK and PD variability for RBC AChE inhibition in the 
population, especially when this endpoint is used as a surrogate for DNT (See 
Finding 24). Many factors can influence an individual’s susceptibility to 
developmental neurotoxicants, potentially resulting in a large inter-individual 
variability (Bellinger, 2009). These factors include: maternal stress and low 
socioeconomic status, sex, coexposures to other neurotoxicants and health co-
morbidities, and genetic polymorphisms (Cowell and Wright, 2017; Dipietro and 
Voegtline 2017; Bellinger, 2009; De Felice et al., 2015). 

24.An additional factor is needed to address endpoints potentially more sensitive than 
RBC AChE inhibition.  For DNT, the default UF is 10-fold; however, the use of this 
factor adds uncertainty to the risk characterization.  There are several animal studies 
showing DNT effects at low doses (Table 2), and there are epidemiological data 
showing relationships between DNT and CPF exposure.  OEHHA recommends a 
thorough evaluation of the studies to see if a POD for DNT can be directly 
determined. 

25.Under the implementing regulations2 for the Toxic Air Contaminant Identification and 
Control Act, one of the criteria for identifying a pesticide as a TAC is that the air 
concentration should be 10-fold lower than that which has been determined to be 
adequately protective (i.e., the target MOE).  In the case of chlorpyrifos, this TAC 
target MOE would be 1000 based on DPR’s analysis. 

The consideration of OEHHA’s above findings on the UFs could result in a higher 
TAC target MOE (of at least 10,000).  Many of the exposure scenarios in the draft 
TAC document for a residential bystander’s drift exposure showed air concentrations 
resulting in MOEs of 1000 or lower values.  Thus, the OEHHA analysis also supports 
the identification of chlorpyrifos at a TAC. 

2 Title 3, California Code of Regulations, Section 6864 
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