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Abstract 

Pesticide uses on impervious surfaces and subsequent offsite transport 
significantly contribute to pesticide detection and aquatic toxicity in urban 
watersheds. This review evaluates the various methods that currently exist to 
model pesticide washoff from impervious surfaces. Empirical equations 
successfully describe pesticide washoff by calibration to a single rainfall event, 
but lack consistent parameterization with varying set time and repeated rainfall. 
Partitioning coefficients determined from experimental data could significantly 
improve PRZM capability in predicting pesticide washoff from impervious 
surfaces. Highlighted in this review is a new semi-mechanistic approach which 
incorporates the time-dependence of washoff potential during the dry period 
after application and washoff dynamics during a runoff event. This review aims 
to provide information to guide model selection and model development for 
pesticide registration, regulation, and mitigation for urban pesticide uses. 
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Introduction 

 
Pesticide transport in urban watersheds is a function of stormwater hydrology, 
various processes that control transport in watercourses, and the dynamics of 
pesticide release and washoff from treated surfaces. While stormwater modeling 
and pesticide transport in runoff have been extensively investigated, relatively 
few studies have evaluated pesticide washoff from urban landscapes, especially 
from impervious surfaces. Impervious surfaces are primary sources of overland 
flow generation in the urban environment. Impervious surfaces are often directly 
treated with pesticides in structural pest control applications, paved area 
applications, and incidental overspray or drift (1, 2). Previous studies suggest 
that impervious surfaces are the dominant contributors to pesticide movement 
off-site in urban areas (3-5). Compared to other surfaces such as turf and bare 
soils, limited knowledge is available on the dynamics of pesticide buildup and 
washoff on impervious surfaces. The California Department of Pesticide 
Regulation (CDPR) recently adopted new regulations to protect water quality in 
urban areas by restricting pyrethroid application amounts and certain contact 
areas (6). Thus, there is an emerging research need for improved washoff 
modeling capabilities to evaluate the effectiveness of the regulations and 
extrapolate the effect of mitigation practices to different conditions. 
 
The physical processes and modeling approaches of urban pollutant washoff and 
runoff have been reviewed in previous studies (7-13). Most of the reviews focus 
on pesticide transport in overland flow, concentrated flow and/or pipe flow over 
urban landscapes. This chapter reviews existing modeling approaches for 
simulating pesticide washoff from impervious surfaces, and introduces a semi-
mechanistic model developed based on washoff experiments data. The models 
discussed here are classified as empirical or mechanistic (or semi-mechanistic) 
approaches. The empirical models are based on statistical analysis and data 
fitting and do not explicitly simulate mass transfer from pesticide-treated 
surfaces to the overlying water layer. These models use regression equations to 
mimic the observed washoff loading curves as function of time or runoff 
volume. The mechanistic models formulate pesticide mass fluxes based on the 
concentration gradients across the boundary layer of treated surface and runoff 
water. These models also explicitly describe the dynamics of water runoff and 
degradation on pesticide washoff loss. 

Characterization of Pesticide Washoff 

Most studies investigating pesticide washoff from impervious surfaces are 
small-scale experiments, such as those on concrete cubes and slabs, with 



 

Luo_ACS symposium 2013.docxPrinted October 3, 2014  3 

pesticide spikes and simulated or natural rainfall (3, 4, 14-17). Runoff water 
samples are analyzed for pesticides (active ingredients and/or degradates) to 
estimate mass flux and persistence for off-site transport. The amount of pesticide 
available to runoff extraction is defined as “washoff potential”, MP (kg/m2, or 
user-defined unit of mass/area), at a given time after application referred to as 
“set time” or “incubation period” (Figure 1a). In addition to degradation, the 
decrease in washoff potential over time may be associated with transport to 
inaccessible domains of the concrete matrix, called irreversible adsorption (14). 
Washoff potential is unlikely to be directly measured; instead, it is operationally 
indicated by “washoff load”, i.e., cumulative mass of pesticide released to water 
over the duration of a rainfall event, MW (mass/area). Washoff load is 
determined by experiments with flowing water (runoff induced by natural or 
artificial rainfall) or static water (immersion for a given equilibration period). 
Washoff load can be measured at given time intervals during a washoff event, 
MW(t), or only at the end of the event as “total washoff load”. For the former 
case, washoff load is usually plotted with cumulative time or runoff, referred as 
a “washoff profile” (3) or “load characteristic curve” (18) for a pesticide in a 
given experimental configuration (Figure 1b). Two time systems are presented 
in Figure 1: td accounts for the duration of the dry period since the last pesticide 
application, and t describes the washing time.  
 
 

 
Figure 1. (a) Washoff potential, MP(0) (dashed line) and total washoff load, 
MW(T) (dots) are presented at a given set time td. (b) Cumulative washoff loads, 
MW(t) (dots) and washoff profile (solid line) measured during washing time t 
(t=0~T). Note: Dotted lines included to connect MP(0) and MW(T) in the two 
panels. 
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Published washoff experiments for pesticides from impervious surfaces have 
been reviewed previously (19, 20). According to measure washoff loads, MW(T), 
usually only a small portion of applied mass could be detected in the runoff, 
even with a short set time, suggesting a rapid initial dissipation. With a longer 
set time, however, extended “tailing” or slow release from concrete surfaces was 
also typically observed. This behavior suggests the potential for further transport 
to non-target areas (Figure 1a). The surfactant components of some formulated 
pesticide products are influential in washoff from concrete surfaces. The effects 
of chemical properties (such as soil partitioning coefficient and soil metabolism 
half-lives) and environmental settings (including rainfall intensity and surface 
conditions of concrete and other media such as asphalt, vinyl siding, stucco, 
wood siding, etc.) were inconsistent. Pesticide washoff profiles generally follow 
a convex, advanced-type curve (Figure 1b), and thus can be characterized by a 
steep initial washoff rate followed by a steadier rate.  
 
In summary, pesticide buildup and washoff, as demonstrated in Figure 1(a) and 
1(b), respectively, should be considered in model development for simulating 
pesticide washoff loads from impervious surfaces. The term of “buildup” is 
taken from early studies of urban non-point source loads of suspended solids, 
heavy metals, chlorides, nutrients, and hydrocarbons. In those studies, buildup is 
considered as a natural accumulation of pollutant available for washoff. More 
recent modeling studies typically included model implementation for 
degradation and application of chemicals in buildup simulation. 

Empirical Equations for Washoff Profiles 

The most popular modeling approaches for predicting pesticide washoff from 
impervious surfaces are based on empirical equations, including exponential 
functions or power-law functions of runoff volume. Since the empirical 
equations are applied to each individual rainfall event with a given set time (td), 
the associated washoff potential and washoff load are only dependent on the 
washing time (t). Therefore, td does not appear in the following equations. 
 
The exponential function follows from the assumption that the rate of pollutant 
washoff is proportional to the washoff potential during a rainfall event (18), 
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Where  
k1 =  the washoff coefficient (mm-1)  
r = the runoff rate (mm/hr)  
R = the cumulative runoff depth (R=r*t, mm)  
 
Eq. (2) is the integrated form of Eq.(1), where a constant runoff rate is assumed. 
A similar exponential relationship is obtained for time-dependent rates. The 
exponential function for washoff prediction has been used in the hydrological 
simulation program – FORTRAN (HSPF) (21), early versions of the storm water 
management model (SWMM) (22), the storage, treatment, overflow, runoff 
model (STORM) (23), and site-specific modeling studies (24-27). The washoff 
coefficient k1 is related to pollutant characteristics and the shear stress at the 
flume bottom (28, 29). The coefficient value determines the shape of washoff 
profile predicted by the exponential function (Figure 2). In the early version of 
SWMM, for example, the default k1 value was set as 0.18 mm-1 (18), indicating 
90% washoff under 12.7 mm (or 0.5 inch) runoff, i.e., 1-exp(-0.18*12.7)=0.9.  
 
The exponential function in Eq. (1) implies the independence of predicted 
pollutant concentration on the runoff rate, 
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Where  
A = the area of study surface, and A*r*dt is the total runoff volume in the 

corresponding units.  
 
The result is referred to as an event-mean-concentration (EMC). EMCs are 
widely used in watershed-scale transport modeling, especially for total 
maximum daily load (TMDL) projects. Concentrations in urban runoff may vary 
with runoff rate, as observed in previous studies (12, 30). The standard 
adjustment to overcome this limitation is to introduce a power (n, 
dimensionless) of runoff intensity to Eq. (1), 
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with k2 as a new washoff coefficient which has different units and values than k1 
in Eq. (1). In this case, the resultant concentration will also be proportional to 

)1( −nr , so the concentration may increase or decrease with runoff rate according 
to the value of n. 
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Figure 2. Demonstration of washoff profiles based on (a) exponential function, 
Eq. (2); and (b) power-law function, Eq. (6) with k4=1 
 
The mechanism of the power-law model is associated with the simulation of a 
diffusion process for a planar system. The early portion of the washoff profile 
could be formulated as, 
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where k3 and m are the linear and exponent characteristics of the diffusion 
process, respectively (Figure 2). A value of m=0.5 suggests a diffusion process 
that follows Fick’s laws. With m<1, the power-law function generates convex, 
advanced-type washoff profiles consistent with those observed for pesticide 
washoff from concrete surfaces (Figure 1). With m close to 0, the profile 
suggests rapid initial washoff followed by a more steady state, or “type A” 
profile (3), while large m values indicate “type B” profile with relative steady 
washoff rate over the duration of the experiment. Again the simple relationship 
of R=r*t can be introduced to Eq. (6) for the prediction of pollutant washoff by 
runoff depth, 
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Eq. (6) has been widely used in the urban pollutant runoff models such as 
SWMM and more recent modeling studies (31, 32). Similar functions have also 
been successfully used to predict in-stream pollutant loadings, including 
pesticides at watershed scale (33, 34). Model efforts were applied to estimate the 
exponents (m) from commonly available properties. In HardSPEC, a first-tier 
model for estimating aquatic exposure resulting from herbicides applied to hard 
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surface developed by the UK Pesticide Safety Directorate (35), for example, the 
exponents in power-law function are formulated as functions of pesticide 
solubility (for soluble mass) or specific gravity (non-soluble mass). 

Transport Modeling with Impervious Scenarios 

In addition to empirical equations, physically-based modeling approaches have 
also been used to predict pesticide washoff over impervious surfaces. Model 
equations were originally developed based on transport mechanisms in soils. For 
example, USEPA developed Tier 2 modeling scenarios for its regulatory model 
PRZM (Pesticide Root-Zone Model) for applications on impervious surfaces 
(36). PRZM assumes instantaneous chemical equilibrium between water, air, 
and soil/concrete matrix during a rainfall event. When applied to impervious 
surfaces, PRZM transport equation can be simplified, 
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Where  
z = the interaction depth of the impervious surface layer containing 

pesticide potentially available to water extraction and all the following 
variables are defined within this depth 

Cw = the dissolved concentration (g/cm3)  
θ = the volumetric water in the soil (dimensionless)  
α = the volumetric air contents in the soil (dimensionless)  
ρs = the bulk density (g/cm3)  
KH = the dimensionless Henry's constant  
KP = the lumped, first-order decay constant (d-1) for the solid phase  
Kd =  the lumped, first-order decay constant (d-1) for the dissolved phases 
Q = the total runoff volume (cm3/day) 
Aw = the drainage area (cm2) 
Xe = the erosion loss (g/day)  
 
In addition to the processes presented in Eq. (7), PRZM also simulates 
dispersion and diffusion in dissolved and vapor phases as well as degradation in 
the vapor phase. The washoff flux was adjusted according to the availability of 
chemical residues in the dissolved phase for runoff extraction, which is assumed 
to be decreasing with the interaction depth z. Soil-related properties (soil 
adsorption coefficient, soil aerobic metabolism half-life, and soil photolysis 
half-life) are applied to a hypothetical impervious surface characterized by high 
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curve number (CN2=98), small incorporation depth (0.1 cm) and zero 
partitioning coefficient to concrete (Kd=0). 
 
The PRZM-based modeling approach for impervious surfaces can be further 
improved by introducing an effective pesticide partition coefficient for 
impervious surfaces (Kd

*) to replace the soil Kd in Eq. (7). Values of Kd
* can be 

directly incorporated in PRZM simulations. For other models, Kd
* can be 

expressed as the product of KOC (soil partitioning coefficient normalized by 
organic carbon, OC, content) and a “surface coefficient” representing the OC 
content equivalent for each impervious surface. This was also accepted by the 
HardSPEC model with a “surface coefficient” of 0.02% for concrete and 1% for 
asphalt based on herbicide washoff experiments (35). 
 
For demonstrating the model capability, PRZM with USEPA impervious 
modeling scenario was tested for nine pesticides commonly used in urban areas 
(Table 1). Washoff measurements were taken from CDPR-supported 
experiments under controlled rainfall of approximately 25mm/hr for 1 hour (3, 
4, 16, 20). Pesticide washoff loads were measured from pre-washed concrete 
surfaces at various set times. The following three simulation settings were 
involved in the test, [1] Kd=0 as suggested by USEPA, [2] reported Kd values 
from soil adsorption studies, and [3] Kd calibrated to the measured washoff 
loads at 1 day after application (DAA), and applied to data with a longer set 
time. Input parameters were mainly retrieved from registration data (37) (Table 
1). Pesticide degradation on the impervious surfaces during dry periods was 
simulated with soil photolysis half-life (SPHOT) (38). It’s worthy to note that 
Kd and other physiochemical properties are retrieved for the active ingredients, 
while Kd

* were determined for the pesticide products with formulations 
specified in the experimental documentations. Even with the same active 
ingredient, pesticide products with different formations could be associated with 
different Kd

* values. As expected, the simulations with Kd=0 significantly 
overestimated the measured data of all tested pesticides. Predicted mass losses 
were up to 46% of applied mass, while the measured data ranged from 0.006% 
to 20.8%. By using reported Kd values in soils, PRZM generally underestimated 
washoff loadings measured at 1DAA (Figure 3a), except for two chemicals with 
relatively high mobility (imidacloprid and malathion, Kd<2 mL/g for both). With 
a longer set time, conservative estimates were obtained for some pesticides, 
mainly due to their persistence as indicated by large SPHOT values used in 
PRZM for representing terrestrial dissipation. 
 
Table 1. Tested pesticide products with PRZM inputs 
Pesticide MW HENRY VP SOL SPHOT Kd Kd

* 
Bifenthrin 422.9 7.2E-3 1.4E-7 0.001 104 3925 20 
Beta- 434.3 5.3E-7 1.6E-8 0.0012 5.6 23 0.8 
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cyfluthrin 
Carbaryl 201.2 2.7E-9 1.2E-6 11.3 3421 3.2 0.9 
Esfenvalerate 419.9 6.3E-7 1.5E-9 0.001 1391 38.8 30 
Fipronil 437.2 8.5E-11 2.8E-9 1.9 34 10.7 5 
Imidacloprid 255.7 6.5E-11 1.0E-7 514 39 1.9 5 
Lambda-
cyhalothrin 

449.8 1.8E-7 1.6E-9 0.01 274 1960 15 

Malathion 330.4 1.2E-8 3.4E-6 125 118 1.0 1.3 
Permethrin 391.3 7.5E-8 4.5E-8 0.07 289 63.3 40 
Parameters: 
MW = molecular weight (g/mol) 
HENRY = Henry’s law constant (Pa m3/mol) 
VP = vapor pressure (mPa) 
SOL = water solubility (ppm) 
SPHOT = soil photolysis half-life (day) 
Kd =  soil partitioning coefficient (mL/g) 
Kd

* =  calibrated partitioning coefficient on impervious surfaces (mL/g). 
 
Notes: Chemical properties are mainly taken from CDPR Pesticide Chemistry 
Database (37). For data not reported in the CDPR database, other data sources 
are used: SOL of bifenthrin, beta-cyfluthrin, and esfenvalerate from the IUPAC 
FOOTPRINT pesticide properties database (39), and SPHOT of beta-cyfluthrin 
from a USEPA publication (40).  
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(a) 
 

 
(b) 
 

 
Figure 3. PRZM-predicted pesticide washoff loads from impervious surfaces 
relative to measurements (3, 4, 16, 20), (a) with repeated soil Kd (partitioning 
coefficient), and (b) with Kd calibrated to measurements at 1DAA (days after 
application). Open circles for data at 1DAA (days after application) and closed 
circles for those >1DAA 
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Simulation results with calibrated Kd values (Figure 3a) were between those 
with Kd=0 and reported soil Kd: predictions overestimated observations at 
>1DAA within 1 magnitude for most of the tested pesticides. Except for 
imidacloprid and malathion, which are associated with relatively high mobility, 
calibrated Kd

* values (Table 1) were smaller than the corresponding soil Kd. This 
finding was consistent with previous studies for pyrethroids (38, 41, 42). This 
suggests that adjustments are required before using a Kd value measured in soil 
adsorption studies to transport modeling on impervious surfaces. Based on the 
data in Table 1, the ratio of Kd/Kd* showed an increasing trend with the 
corresponding Kd value (p<0.001).  

A Semi-Mechanistic Model Based on Experimental Data 

Implication and research gap based on model/data review 

The review and investigation of existing modeling approaches and experimental 
data suggest that the basic concepts of fate and transport processes and their 
modeling implementations, such as chemical dissipation half-lives and mass 
transfer coefficients (MTC’s) (as a function of portioning coefficient and 
boundary layer depth), are also mathematically applicable for predicting 
pesticide washoff from impervious surfaces. However, adjustments are required 
to better predict measured washoff data. First, pesticide washoff from 
impervious surfaces cannot be simulated with the commonly reported chemical 
properties for pesticides such as soil partitioning coefficient and soil metabolism 
half-lives. New parameters should be defined and determined from measured 
data. The effective partitioning coefficient value of a pesticide on concrete could 
be significantly lower than that in soils (Table 1). Secondly, the effective 
dissipation rate of washoff potential shows a decreasing trend with set time. As 
mentioned previously, the loss of washoff potential during the dry period after 
application is attributed to pesticide degradation and irreversible adsorption to 
concrete matrix. This is further confirmed by fitting the total washoff losses into 
a pseudo-first-order kinetics (15, 20), and suggests that the transferability of a 
pesticide from impervious surfaces to runoff water after application is initially 
high, but decreases quickly over time. Systematical simulations for the time-
dependence of the effective dissipation rate constant are not available in 
modeling approaches by empirical equations or by PRZM. 
 
Finally, the effective MTC also changes during a rainfall event. Using the 
power-law function as an example, most experiments reported a non-Fickian 
washoff profile (m≠0.5) (20), indicating a varying MTC with washing time. The 
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major challenge in applying empirical equations is that the calibrated model 
parameters (k1 in Eq. (2) and m in Eq. (6)) vary with set time to reproduce 
measured data. Washoff profiles must be described as bi-phasic or multi-phasic 
processes (14, 16, 26, 27, 43). For example, Thuyet et al. (16) applied power-
law functions to fit washoff profiles of imidacloprid from concrete surfaces, and 
the results indicated that the regression coefficients must be calibrated separately 
for each of the washoff profiles with various set times. Similarly, power-law 
exponents (m values) were estimated for measured washoff data of commonly 
used insecticides from 21 controlled rainfall events with R2 ranging from 0.86 to 
1.00 (20). Small m values were observed with a short set time for all tested 
pesticides. There was a general trend toward increasing m values with increasing 
set time and with repeated rainfall.  
 
In summary, new model development will address the above implications and 
research gaps in predicting pesticide washoff from impervious surfaces. This 
can be realized by formulating new parameters for pesticide dissipation rate 
constant, mass transfer coefficient, and their time dependence.  

Model equations and evaluation 

A semi-mechanistic model was developed for pesticide washoff from 
impervious surfaces by describing washoff potential dynamics during dry 
periods and washoff profiles during rainfall events. Detailed information on 
model development and applications were documented in the previous 
publications (19, 20). This review highlights the key equations and features in 
the model.  
 
Pesticide washoff potential as a function of set time was simulated by pseudo-
first-order kinetics with a time-varying parameter, KP(td) (d-1), as the effective 
rate constant of the overall loss of pesticide washoff potential. Analysis of 
experimental data suggested that KP is associated with the washoff potential for 
each rainfall event. A linear relationship between KP and the washoff potential 
was assumed, 
 

dtPPdP MKtK |)0()0()( ⋅=  (8) 

 
where KP(0) is the initial rate constant immediately after pesticide application. 
Eq. (8) demonstrates that the rate of decline of washoff potential decreases over 
time, which was consistent with the results from the experimental data analysis.  
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Washoff profiles were simulated using an equation similar to Fick’s second law, 
with the effective mass MTC varying with time, D*(t) (s-1). At a given set time 
td, the washoff load as a fraction of the washoff potential (F) was estimated as, 
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where τ is a characteristic dimensionless time, 
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According to the analysis of washoff profiles, the early portion of the washoff 
profiles followed a power-law function and the following equation was assumed 
for the dynamics of D*, 
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where s is a slope factor representing the assumed relationship between the 
exponent n and the washoff potential. The power-law function in Eq. (11) 
provided a simple mathematical form to describe the dynamics of pesticide 
release from concrete, which have previously been described as bi-phasic or 
multi-phasic processes (14, 16, 26, 27, 43). Eq. (11) was applied to pyrethroids, 
suggesting a decreasing trend of the effective mass transfer coefficient during 
the rainfall event (n<0). For relatively soluble chemicals (carbaryl, imidacloprid, 
fipronil, and malathion), n was expressed as )0,(21 dP tMs ⋅−  with a value 
between -1 and 1. Positive n values indicate that D* increases within a washoff 
test, as observed in the data analysis on measured washoff profiles with m>0.5 
(Figure 2b).  
 
The semi-mechanistic model has been applied to a large set of experimental data 
with nine insecticides commonly used in urban environment (Table 1). One set 
of model parameters D*(0), K(0), and s was assigned to each pesticide product 
for all experiments with that product. Model parameters were calibrated based 
on experimental data from the first rainfall events, and validated with data with a 
longer set time. Calibrated models and their performance in predicting pesticide 
washoff from impervious surfaces were documented in the previous studies (19, 
20). Modeling results for selected pesticides are demonstrated in Figure 4. In 
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summary, with appropriate calibration the model was capable to capture the 
dynamics in washoff profiles from concrete surfaces for insecticides with wide 
ranges of chemical properties (Table 1) and set time (1.5 hours to 238 days). For 
overall model performance, resultant relative RMSE (root mean square error) 
values were less than 10%, and NSE (Nash-Sutcliffe efficiency) coefficients 
were larger than 0.98 for tested pesticides. 
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Figure 4. Predicted and observed cumulative washoff loads of selected 
pesticides. Shown in parentheses are set times (multiple set times indicate 
related rainfall events). Adapted with permission from reference (20). Copyright 
2014 ACS Publications. 

Summary and Suggestions 

This chapter reviewed modeling approaches for predicting pesticide washoff 
from impervious surfaces, including empirical equations (SWMM as a 
representative model), a chemical transport model (PRZM), and a semi-
mechanistic model. Washoff module in SWMM is based on regression 
coefficients which are supposed to be parameterized for each individual rainfall 
events, but do not have direct physical meanings. PRZM and the semi-
mechanistic model are designed for more consistent simulations for each 
pesticide by introducing physically-based processes in washoff simulation. 
SWMM and the semi-mechanistic model provide sub-daily simulation, while 
PRZM only reports daily (or event total) results. Since the majority of washoff 
losses are observed during the early stage of a rainfall event, PRZM parameters 
calibrated to total washoff loads actually reflect the initial washoff mass flux. 
Both the empirical equations and the semi-mechanistic model are designed to 
simulate total (dissolved and adsorbed) pesticide runoff, by incorporating the 
contribution of particle-bound washoff into the calibrated parameters. PRZM 
with USEPA impervious modeling scenario only simulates dissolved pesticide. 
However, the effective Kd value (Kd* in Table 1) were usually calibrated with 
measured data of total concentrations, so that the predictions would be 
consistent in terms of total washoff mass. 
 
Both SWMM and PRZM require runoff data supplied by other models, such as 
the kinematic wave approach for SWMM and SCS curve number method for 
PRZM. Systematic evaluations on the effects of rainfall intensity and runoff rate 
on pesticide washoff loads are not available. Increased rainfall intensity may 
have complicated effects on pesticide washoff loads. However, most of the 
existing models only simulate one of those effects, i.e., higher runoff rates, and 
would always predict increased washoff loads under higher rainfall intensity. 
This is not consistent with recent washoff experiments on insecticides where a 
significant relationship between rainfall intensity and washoff loads were 
confirmed (3, 4). Therefore, an urban scenario for the semi-mechanistic model is 
suggested to be developed for regulation evaluation according to the local 
conditions such as representative weather conditions (intensity, duration and 
frequency of rainfall) and impervious surface properties (19, 20). The scenarios 
could also serve as guidelines for the washoff experiments and model 
calibrations to determine the required model input parameters. 



 

Luo_ACS symposium 2013.docxPrinted October 3, 2014  16 

 
SWMM was initially designed for urban pollutants other than pesticides. 
Applications to urban pesticide evaluation require secondary development, such 
as the additional module to handle episodic chemical applications. Improved 
SWMM was applied to California urban community in Orange County, and 
satisfactorily simulated in-stream pyrethroid concentrations as daily and max 6-
hr means (44). PRZM with an impervious modeling scenario has been used by 
USEPA and others in the risk assessment of urban pesticide uses on endangered 
species (38, 45, 46). By incorporating with EXAMS, the model conservatively 
estimated pesticide concentrations in urban streams. Determination of effective 
partitioning coefficients for pesticides on impervious surfaces is suggested for 
future studies. The semi-mechanistic model has been shown to reproduce 
pesticide washoff profiles for a range of set times and for repeated runoff events 
with a single calibration (19, 20). The model is being incorporated into 
hydrological simulators of overland flow for pesticide risk assessments at urban 
community scale. For example, researchers from the Stone Environmental, Inc., 
have coupled the model into SWMM. More details of their development and 
applications are provided in other chapters of this book (47).  In addition, 
integration with overland flow simulation by kinematic wave equations was also 
proposed for the development of a spatially high-resolution modeling system for 
evaluating urban pesticide regulation and mitigation efforts (48). 
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