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INTRODUCTION 
 
The Department of Pesticide Regulation (DPR) is required to limit emissions of volatile organic 
compounds (VOCs) from pesticides in Ventura County during each annual May–October ozone 
season. The maximum allowable annual Ventura County ozone season pesticide VOC emissions 
(VOCMAX) are defined in regulation (Title 3, California Code of Regulations, section 6452.2). DPR 
limits emissions by restricting use of the highest VOC contributing pesticides: fumigants. These 
are methyl bromide, 1,3-dichloropropene, chloropicrin, metam-sodium, metam-potassium, 
dazomet, and sodium tetrathiocarbonate. DPR calculates the maximum allowable fumigant 
emissions (VOCFUM) as the difference between VOCMAX and projected nonfumigant pesticide 
emissions (VOCNF) during the ozone season.  
 
[1]    VOCFUM =VOCMAX −VOCNF  
 
Fumigant use is then allocated based on VOCFUM using application method adjustment factors as 
described in Barry et al. (2007). The procedure to calculate VOCFUM as defined in regulation 
therefore requires DPR to develop an estimate of VOCNF in advance of an upcoming ozone 
season.  
 
Allowable fumigant emissions for the upcoming May–Oct ozone season are announced in  
mid-February of that year to allow growers and the Ventura County Agricultural Commissioner 
time to execute the permit process and plan for the year. However, the prior year’s pesticide use 
report (data that are the basis for calculating historical VOCNF are usually not available until late 
spring or early summer. Consequently VOCNF forecasts for the upcoming year must be estimated 
from historical VOCNF data from two years prior because these are the most recent available. 
 
This memorandum documents exploratory analysis of the Ventura County historical VOCNF data 
and development of a univariate Box-Jenkins, or ARIMA (autoregressive integrated moving 
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average) time series model for forecasting future ozone season VOCNF from historical VOCNF. 
The model that was selected was one of several that were investigated, and the various modeling 
approaches are briefly summarized here. The ARIMA model was then compared to DPR’s 
current approach of using VOCNF from two years prior as a forecast for the current year. Mean 
forecast errors were 6.1 percent and 9.3 percent for the ARIMA and “two years prior” models, 
respectively, over the years 2000–2007.  
 
More generally, this memorandum outlines a general framework for exploratory time series  
data analysis of emissions, model development, diagnostic and model validation procedures. 
These procedures may be adapted for DPR’s future VOCNF forecasting needs, such as in the  
San Joaquin Valley. 
 
EXPLORATORY DATA ANALYSIS 
 
There has been a significant (p<0.05) downward trend in historical annual VOCNF since 1990 
(Figure 1a). However, there are relatively few annual VOCNF data for modeling, and those data 
possess no significant autocorrelation structure (Figure 2). Consequently the only obvious model 
appropriate for forecasting future annual VOCNF from historical annual VOCNF is a simple 
linear trend model. Such a trend model yields relatively poor estimates of VOCNF, with 
consistent low bias estimates and high absolute error as measured by 2000–2007 data  
(Figure 1b). In contrast to the annual data, monthly historical VOCNF data demonstrate a 
consistent periodicity (Figure 3). For example, VOCNF in each year are lowest during winter 
months and greatest during mid- to late summer months. The presence of both nonseasonal and 
seasonal autocorrelation is evident from the spikes at lag = 1 and 12 in the autocorrelation 
function (ACF), the partial autocorrelation function (PACF), and spikes in the periodogram 
(Figures 4 and 5). Consequently, it may be possible to model the monthly VOCNF using a time 
series model that accounts for the autocorrelation structure of the data. Monthly forecasts may 
then be aggregated by year and ozone season to yield more accurate VOCNF forecasts than those 
obtained from the simple trend model. 
  
A requirement for certain time series models including ARIMA is weak stationarity of the 
modeled time series y1, y2, . . . yt. A weakly stationary time series is a finite variance series with a 
mean that is constant over time [E(yt) = constant, independent of time t] and where the 
autocovariance function Cov(yt,yt+k) is independent of t and depends only on separation k 
(Shumway and Stoffer, 2006). Differencing is one of the most effective transformations for 
inducing time series stationarity (Shumway and Stoffer, 2006), and Bowerman and O’Connell 
(1987) provide practical diagnostics for evaluating stationarity of differenced time series through 
analysis of their ACF and PACF. Those diagnostics were used here to evaluate the ability of 
selected differencing procedures to induce stationarity.  
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The weak but significant downward trend in the 216 monthly VOCNF data (Figure 3, p<0.05) and 
their persistent autocorrelation indicate nonstationarity (Bowerman and O’Connell, 1987). 
Several differencing transformations were evaluated to induce stationarity, including first regular 
differencing, first seasonal differencing, and first regular and first seasonal differencing. An 
analysis of the differenced series’ ACFs and PACFs indicated that first seasonal differencing 
yielded a stationary series zt = yt – yt-12.  
 
BUILDING AND FITTING THE ARIMA MODELS 
 
The next step in building the ARIMA model was to winnow down possibilities for the type 
(autoregressive or moving average) and order (0, 1, 2, . . .) of both the seasonal and nonseasonal 
components of the model. This consists of comparing certain characteristics of the ACF and 
PACF of the differenced series to theoretical characteristics of ACF and PACF for different 
ARIMA models. Operational guidelines for these comparisons are given in Bowerman and 
O’Connell (1987), and are similar to those described in other texts (e.g. Shumway and Stoffer, 
2006).  
 
At the nonseasonal level (lag ≤ 9), the ACF and PACF show identical behavior: both cutoff to 
very low values after lag = 2 (Figure 6). This is indicative of either a nonseasonal autoregressive 
component of order 2 or a moving average process of order 2. Bowerman and O’Connell 
recommend fitting both nonseasonal models and selecting the best fit model. At the seasonal 
level (lag = ML, L= seasonal length = 12, M= 1, 2, 3, . . .) the ACF cuts off after M=1 while the 
PACF dies down more gradually (Figure 6). This behavior is indicative of a moving average 
process of order 1 (Bowerman and O’Connell, 1987). 
 
The notation used to denote a specific seasonal ARIMA model is ARIMA(p,d,q) x (P,D,Q)L 
where: 

p = order of nonseasonal autogressive component, 
d = order of nonseasonal differencing,  
q = order of the nonseasonal moving average process, 
P = order of seasonal autogressive component, 
D = order of seasonal differencing,  
Q = order of the seasonal moving average process, and  
L = seasonal length. 

 
While the exploratory analysis suggested either an ARIMA(2,0,0)x(0,1,1)12 or an 
ARIMA(0,0,2)x(0,1,1)12 model was appropriate for the VOCNF data, several additional 
ARIMA(p,d,q)x(P,D,Q)12 models were evaluated to test that conclusion. Models were compared 
based on several criteria, including: 
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o presence of significant nonseasonal or seasonal autocorrelation as shown by the residual 
ACF/PACF and/or spectral analysis of model residuals, including periodogram, 
cumulative periodogram and spectrum 

o minimum value of the bias-corrected Akaike Information Criterion (AICc) 
o statistical signficance of autoregressive and/or moving average model coefficients 
o statistical signficance of the Ljung-Box chi-square statistics at seasonal lags L, 2L, 3L, 

and 4L 
o correlation between fitted model values and the monthly 1990 – 2007 VOCNF data 

 
The AICc is calculated as (Shumway and Stoffer, 2006): 
 

[2]    RSS n + kAICc = ln( ) +  
n n − k − 2

 
Where RSS is the model residual sum of squares, n = number of time series data after 
differencing, and k is the number of parameters in the model. Smaller values of AICc indicate a 
better model fit. The AICc statistic allows consistent comparison of models with different 
numbers of parameters and/or orders of differencing. The Ljung-Box chi-square statistic 
provides a joint test of whether all residuals below a specified lag are random white noise 
residuals. If the null hypothesis of random residuals is rejected (p ≤ α), the model is inadequate 
and should be rejected.  
 
Based on the criteria above, the two best fit ARIMA models were those initially identified in the 
analysis of ACF and PACF of the differenced series zt. The two models yielded very similar fits 
to the data; the ARIMA(2,0,0)x(0,1,1)12 yielded an AICc of 18.17, while that of 
ARIMA(0,0,2)x(0,1,1)12 was 18.16. The second nonseasonal autoregressive coefficient in the 
ARIMA(2,0,0)x(0,1,1)12 model fit was not significant at the α= 0.05 level (p=0.07, Figure 7), but 
this model was retained because of the goodness of fit was nearly identical to the alternate 
ARIMA(0,0,2)x(0,1,1)12 as measured by AICc, and removing the second order coefficient (fit 
not shown) yielded significant Ljung-Box statistics and a higher AICc. Both ARIMA models 
were therefore retained for further comparison in a validation exercise. 
 
The residuals for both models were not significantly autocorrelated as indicated by the Ljung-
Box statistic (Figures 7 and 8) and the ACFs, PACFs, and cumulative periodograms (Figures  
7-10). While both ARIMA models described the temporal fluctuations of monthly VOCNF well, 
the models did have a tendency to under-predict the absolute value of the annual maxima and 
minima, respectively (Figures 9b and 10b). Correlations between ARIMA-fitted and observed 
data were approximately 85 percent for both models. (Figures 9c and10c).  
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The equation of the multiplicative ARIMA(2,0,0)x(0,1,1)12 model for the seasonally differenced 
series zt (= yt - yt-12, yt = VOCNF in month t) 
 
[3]    zt = δ + wt −θ s,1wt−12 +φ1zt−1 +φ2zt−2  
 
where δ is a constant, wt is a Gaussian white noise term assumed N[0,σ 2

wt ], θs,1 is the seasonal 
moving average coefficient, and φ1 and φ2 are the nonseasonal autoregressive coefficients.  
 
The forecast equation for the multiplicative ARIMA(0,0,2)x(0,1,1)12 model is: 
 
[4]    z = δ +t w −θ w − −θ w − −θ θ θ2 w +t 1 t 1 2 t s,1 t−12 1 s,1wt− +θ θ13 2 s,1wt−14  
 
where θ1 and θ2 are nonseasonal moving average coefficients. Note that the expected values of 
future wt are zero, so those terms are ignored in [3] and [4] when forecasting future zt. 
 
MODEL COMPARISONS 
 
Currently, Ventura County annual ozone season VOCNF from two years prior are taken as the 
forecast for the current year (Neal et al., 2008). The two ARIMA models were compared to this 
“two year prior” forecast approach by fitting each model to the monthly VOCNF series over the 
period year=1990 to year= (forecast year-2). This was performed eight times for each model 
using 2000 ≤ forecast year ≤ 2007. In each case the resultant fitted model was then used to 
forecast monthly VOCNF for the forecast year. The May–October ozone season monthly VOCNF 
forecasts were then summed to obtain the annual VOCNF forecast for that forecast year.  
 
Over the “validation” period 2000–2007, annual forecasts based on the two ARIMA models had 
a higher correlation with actual VOCNF than the “year-2” forecasts (Figure 11), although none of 
the correlations were significant. This was not a surprise given the relatively narrow range in 
VOCNF, the low sample size, and the high volatility of actual VOCNF–especially relative to the 
ARIMA forecasts (Figure 11). Mean and median percent error were slightly lower for the year-2 
forecast model, but this model also yielded the most extreme minimum and maximum percent 
error (Table 1). In terms of mean absolute percent error, both ARIMA models yielded more 
accurate forecasts than the year-2 model. However, the ARIMA(0,0,2)x(0,1,1)12 provided 
slightly more accurate forecasts than ARIMA(2,0,0)x(0,1,1)12. In addition, the 
ARIMA(0,0,2)x(0,1,1)12 model was more robust than the ARIMA(2,0,0)x(0,1,1)12 model in the 
sense that fits to the smaller “validation” datasets (e.g. 1990–1998, 1990–1999, 1990–2000 . . .) 
were consistently better based on significance of the fitted coefficients, the AICc and the  
Ljung-Box statistics. 
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TABLE 1. Comparison of “two year prior”, ARIMA(2,0,0)x(0,1,1)12 and 
ARIMA(0,0,2)x(0,1,1)12 model forecasts over years 2000 – 2007. All ARIMA model forecasts 
for any given year are based solely on that respective ARIMA model as fitted to actual 1990 
through actual (year-2) VOCNF data.   
 
 Ventura County Nonfumigant Ozone Season VOC Emissions (lbs) 

 actual and modeled emissions 
YEAR actual 2 years prior ARIMA(2,0,0)x(0,1,1)12 ARIMA(0,0,2)x(0,1,1)12
2000 195552 188227 178803 178332 
2001 184412 160146 173201 172751 
2002 166441 195552 173599 172622 
2003 173957 184412 172004 171296 
2004 163690 166441 166736 166243 
2005 182001 173957 163867 163917 
2006 185780 163690 162063 161888 
2007 156598 182001 165145 163474 

     
 percent difference = [(actual – modeled)/actual] 
  2 years prior ARIMA(2,0,0)x(0,1,1)12 ARIMA(0,0,2)x(0,1,1)12 
mean --- -1.0% 3.4% 3.7% 
median --- 1.0% 3.6% 3.9% 
min --- -17.5% -5.5% -4.4% 
max --- 13.2% 12.8% 12.9% 
     
 absolute percent difference 
  2 years prior ARIMA(2,0,0)x(0,1,1)12 ARIMA(0,0,2)x(0,1,1)12 
mean --- 9.3% 6.3% 6.1% 
median --- 9.0% 5.8% 5.4% 
min --- 1.7% 1.1% 1.5% 
max --- 17.5% 12.8% 12.9% 
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OTHER TIME SERIES MODELING APPROACHES 
 
Several other models were investigated for their ability to fit the historical monthly VOCNF data. 
Based on the model fitting criteria discussed previously, none of these models yielded better fits 
than the two ARIMA models discussed in detail above. These other models are only generally 
described here and include: 
 

1. A simple additive trend-seasonal decomposition model (Minitab, 2004).  
 

[5]    VOCNFi = Tri + Si + ε i  
 
The model assumes that emissions in any month i ( 1 ≤ i ≤ 216 for years 1990 – 2007) are 
the sum of three components: a simple linear trend, a seasonal component consisting of  
12 monthly indices (January–December) that adjust each monthly value up or down from 
the trend line by a fixed amount, and a “white noise,” or random error term. The resultant 
model fit the general temporal pattern of seasonal VOCNF fluctuations, but displayed two 
shortcomings. First, each calendar month’s adjustment was constant from year to year, so 
the model was unable to account for annual variations in each month’s excursions from the 
trend line. Secondly, the residuals displayed a high level of seasonal and non-seasonal 
autocorrelation, indicating the model is not accounting for all the structure in the data. This 
latter problem was addressed by subsequent modeling of the error term εi using ARIMA. 
This overall two-step modeling procedure did provide a relatively good fit of the data, but 
the additional complexity was a drawback. 

 
2. Deterministic regression models  

Two models were constructed using linear combinations of various trigonometric terms. The 
first model included the following explanatory variables: t, sin(nπ mo/12) and cos(nπ 
mo/12), where t = decimal time (1990 ≤ t ≤ 2007),  mo = month (1 ≤ mo ≤ 12), and n is an 
integer (1 ≤ n ≤ 6). The second model also included two additional terms: mo*sin(nπ 
mo/12), and mo*cos(nπ mo/12). Stepwise multiple linear regression was initially used to 
identify significant explanatory variables related to the response variable VOCNFi. One 
motivation for this approach was based on Figure 5, where spectral analysis of the VOCNF 
data showed multiple periodic components in the data. Although very different explanatory 
terms were selected for the two models, both models yielded nearly identical fits. Only the 
first model is described here. The initial stepwise multiple linear regression identified the 
following model: 
  

[6]  ⎡2π mo⎤ ⎡2π mo⎤ ⎡3π mo⎤ ⎡4π mo⎤VOCNFi = ε i + a1t + a2 sin +⎢ ⎥ a3 cos +⎢ ⎥ a4 sin +⎢ ⎥ a5 sin⎢ ⎥  
⎣ 12 ⎦ ⎣ 12 ⎦ ⎣ 12 ⎦ ⎣ 12 ⎦
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This model had similar drawbacks to model 1 discussed above. Subsequent ARIMA 
modeling of the residuals εi did provide a fit of the data that was nearly as good as the 
ARIMA(0,0,2)x(0,1,1)12 and ARIMA(2,0,0)x(0,1,1)12 models based on AICc. However, the 
additional complexity of the two step modeling procedure was a drawback. 

 
3. The Winters-Holt exponential smoothing model using trend, level and seasonal 
components. (Minitab, 2004).  
 

This model requires selection of weighting factors α, γ, and δ for the trend, level and 
seasonal components, respectively. The weighting factors are restricted to values between  
0 and 1, with values around 0.2 being typical for many applications. The approach taken 
here was to fit the model several times using different combinations of α, γ, and δ that 
covered the approximate range of 0.05 – 0.5 in 0.05 increments for each. The “best” 
combination of weighting factors was chosen based on the minimum mean absolute percent 
error (MAPE) between model fits and VOCNF. this procedure yielded 0.3, 0.05 and 0.3 as 
the best fit α, γ, and δ, respectively, with MAPE = 22. However, the correlation between 
monthly VOCNF and the “best” Winters-Holt model fits was r = 0.80, somewhat lower than 
the two ARIMA models that were evaluated (r ≅ 0.85, Figures 7 and 8). In addition, the 
Winters-Holt exponential smoothing method is generally recommended for short- to 
medium-term forecasts (Minitab, 2004), whereas the requirements here are for longer range 
forecasts out to 2 years. Consequently VOCNF forecasting may not be the best application 
for the Winters-Holt model.  

 
CONCLUSION 
 
Several univariate time series models were evaluated for their ability to describe historical 
Ventura VOCNF and to forecast ozone season VOCNF out to two years in the future. Based on the 
1990–2007 Ventura monthly VOCNF, the model with the best performance was an autoregressive 
integrated moving average model that included a second order nonseasonal moving average 
component, a first-order seasonal autoregressive component, and first order seasonal 
differencing. The adequacy of model performance was shown by 
 

• a correlation of 0.85 between model fits and historical monthly VOCNF data 
• a lack of significant autocorrelation in model residuals at both the nonseasonal and 

seasonal levels based on autocorrelation, partial autocorrelation and spectral analysis 
• the lowest value of mean percent error for 2000 – 2007 VOCNF forecasts (6.1 percent)   

 
The ARIMA(0,0,2)x(0,1,1)12 forecasts are a clear improvement over our current procedure of 
using VOCNF from 2 years prior as a forecast for the current year. This model should be used for 
our next forecast year. It is also apparent that the ARIMA(0,0,2)x(0,1,1)12 model accounts for 
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essentially all of the autocorrelation structure in the VOCNF data. This suggests that any further 
improvement in forecasting accuracy will probably require development of models with 
additional explanatory variables.  
 
For future forecasting efforts, the ARIMA model will need to be re-fitted to the most recent 
VOCNF data to insure the best ARIMA parameter estimates are used. More generally, the 
underlying assumption of all the univariate time series models including the “two years  
prior”–is that past VOCNF data are a good predictor of future emissions. This assumption has 
held reasonably well; the trend and seasonal components of the monthly data were relatively 
consistent over the period of 1990 to 2007. However, my recommendation is that the entire 
analysis be repeated periodically as the trend and seasonal components may very well change in 
the future due to regulatory actions, economic conditions, changes in land use and/or changes in 
cropping patterns.  
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Figure 1. (a) Time series of Ventura ozone season  nonfumigant emissions and fitted linear trend (R2 = 0.58).  (b) 2000 – 2007 
actual and trend forecasted VOCNF. Forecast datum for each year is predicted from regression of VOCNF on year for time period of 
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Figure 2. Autocorrelation function for 1990 – 2007 annual VOCNF data. 
Autocorrelations that do not exceed the dotted lines are not significant.
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Figure 4. Autocorrelation function and partial autocorrelation function of monthly Ventura ozone season nonfumigant emission 
data. The partial autocorrelation at lag k represents the autocorrelation for lag k after effects of the intervening autocorrelations 
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Figure 7. ARIMA (2,0,0)x(0,1,1)12 Model: VOCNF 
Final Estimates of Parameters

Type Coef  SE Coef      T      P
AR   1     0.2577   0.0711   3.63  0.000
AR   2     0.1287   0.0703   1.83  0.069
SMA  12    0.8284   0.0458  18.11  0.000
Constant  -244.24    74.31  -3.29  0.001

Differencing: 0 regular, 1 seasonal of order 12
Number of observations:  Original series 216, 

after differencing 204
Residuals:    SS =  5561170716 (backforecasts excluded)

MS =  27805854  DF = 200

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag            12     24     36     48
Chi-Square    8.2   22.7   39.6   49.0
DF              8     20     32     44
P-Value     0.411  0.305  0.166  0.280
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Figure 8. ARIMA (0,0,2)x(0,1,1)12 Model: VOCNF 
Final Estimates of Parameters
Type         Coef  SE Coef      T      P
MA   1    -0.2581   0.0696  -3.71  0.000
MA   2    -0.2292   0.0692  -3.31  0.001
SMA  12    0.8242   0.0456  18.09  0.000
Constant   -405.2    118.2  -3.43  0.001

Differencing: 0 regular, 1 seasonal of order 12
Number of observations:  Original series 216, after

differencing 204
Residuals:    SS =  5504544272 (backforecasts excluded)

MS =  27522721  DF = 200

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag            12     24     36     48
Chi-Square    5.4   19.4   35.5   43.2
DF              8     20     32     44
P-Value     0.709  0.494  0.309  0.506
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Diagnostic Plots for ARIMA(0,0,2)x(0,1,1) fit of VOCNF
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Figure 9. (a) Cumulative periodogram of N= 204 ARIMA 
(2,0,0)x(0,1,1)12 residuals. In the x-axis, J is the harmonic number (e.g. 
J=1 represents the first harmonic frequency of the residual time series = 
J/N = 1/204). The number m is the largest integer strictly less than N/2. 
For a white noise (random) sequence, a plot of the cumulative 
periodogram vs. J/(m-1) should be approximately linear with slope = 1. 
The dotted lines are the p= 0.10 critical values of a test statistic for 
testing the hypothesis H0: the series is a white noise sequence (Diggle, 
1990, p. 55). The cumulative periodogram shows no deviation outside 
the critical lines, indicating insufficient evidence to reject the null 
hypothesis H0. (b) Time series of ARIMA fitted vs. actual nonfumigant
VOC emissions. (c) ARIMA fitted vs actual VOC emissions.
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Figure 10. (a) Cumulative periodogram of N= 204 ARIMA 
(0,0,2)x(0,1,1)12 residuals. In the x-axis, J is the harmonic number (e.g. 
J=1 represents the first harmonic frequency of the residual time series = 
J/N = 1/204). The number m is the largest integer strictly less than N/2. 
For a white noise (random) sequence, a plot of the cumulative 
periodogram vs. J/(m-1) should be approximately linear with slope = 1. 
The dotted lines are the p= 0.10 critical values of a test statistic for 
testing the hypothesis H0: the series is a white noise sequence (Diggle, 
1990, p. 55). The cumulative periodogram shows no deviation outside 
the critical lines, indicating insufficient evidence to reject the null 
hypothesis H0. (b) Time series of ARIMA fitted vs. actual nonfumigant
VOC emissions. (c) ARIMA fitted vs actual VOC emissions.
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Figure 11. Comparison of “YEAR-2”, ARIMA(0,0,2)x(0,1,1)12 and ARIMA(2,0,0)x(0,1,1)12 model forecasts to actual 
Ventura County ozone season VOCNF data 2000 - 2007. All ARIMA model forecasts for any given year are based solely 
on that respective ARIMA model as fitted to actual 1990 through actual (year-2) VOCNF data.  
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