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SUBJECT: STOCHASTIC EVALUATION OF BACK CALCULATION PROCEDURES 

FOR ESTIMATING FLUX USING DATA FROM THE LOST HILLS STUDY 
 
Background 
 
The Department of Pesticide Regulation (DPR) has utilized the back-calculation technique  
(Ross et al. 1996) for estimating fumigant flux. In brief, this technique requires a collection of  
air monitors surrounding a field where volatilization occurs. These monitors run from periods of 
generally 6 to 24 hours and measure an average concentration over the monitoring period. 
Meteorological data collected during the air measurement periods are utilized in conjunction 
with field and monitor geometry as input to the Industrial Source Complex - Short Term  
Model (ISCST3).The ISCST3 is then used to estimate air concentrations at the monitors during 
each monitoring period. In order to run the ISCST3 model, an assumed flux is used (usually 100 
ug/m2s or 1 ug/m2s). For each period, a regression is then performed using the ISCST3-modeled 
values as x values and measured values as y values. The slope of the regression line is used to 
adjust the artificial flux in order to estimate the actual flux. 
 
The Lost Hills (LHS) Study is being used as a validation exercise for the HYDRUS model. If 
HYDRUS can be validated, DPR hopes to use the HYDRUS model, at a minimum, to estimate 
emissions for minor modifications, such as depth of application, in known application 
methodologies. In order to validate HYDRUS, one needs to compare the HYDRUS-estimated 
fluxes to the back-calculated fluxes. The error in each flux estimate provides a context for 
comparing the fluxes.    
 
Majewski (1977) describes an analytical approximation method for estimating the error 
associated with measuring flux via the aerodynamic flux method. No similar error estimation 
procedure exists for the back-calculation method. Moreover, the back-calculation method has  
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no generally accepted analysis pathway when the initial regression is not significant. When the 
initial regression is not significant, DPR sorts the ISCST3 and measured values independently 
and recalculates the regression based on those sorted values. If a ‘significant’ regression is still 
not achieved by sorting, then average measured air concentrations divided by average modeled 
concentrations for the period is used as a flux estimate. In the LHS study, Sullivan (Ajwa and 
Sullivan 2011) used a more elaborate method, which involves determination of the significance 
and size of the intercept, and either redoing a regression with no intercept or when that fails, 
using the mean measured divided by mean modeled procedure. In no case do Ajwa and Sullivan 
(2011) use a sorting method. 
 
Because there is no obvious way to estimate variability in the back-calculation method and 
because of the varying analysis procedures employed when the initial regression is not 
significant, stochastic approaches were used in an attempt to compare the various methods  
and estimate the associated variability and bias of the back-calculated flux estimate. 
 
This memorandum is a compendium of some stochastic analyses that we undertook to try to 
compare the various procedures used the back-calculation methodology. In some sense it is 
preliminary. We feel, however, that it can be used as a basis for future analysis and discussion. 
We welcome feedback on the approach that we took in this study and on the results of our 
analyses.   
 
The purpose of the LHS study was to ascertain how long to hold a “Totally Impermeable Film” 
type of tarp in order to reduce emissions during tarp cut. The LHS study included four fields and 
two fumigants: 1,3-dichloropropene (1,3D) and chloropicrin (PIC) applied as the formulated 
product, PicChlor 60 (Table 1). More details can be found in Ajwa and Sullivan (2011). 
 
Motivation for stochastic examination of various back-calculation analysis methods 
 
A. Comparison of HYDRUS-simulated and ISCST3 Back-calculated Fluxes  
 
The discussion in this section was originally a reason for embarking on stochastic simulations to 
examine the back-calculation procedure. However, our thinking about this issue has changed 
over time. Nevertheless, the clear conceptual framework has general applicability to modeling 
and questions of validation and so we include it. 
 
Ideally, HYDRUS mean flux predictions for each sampling interval i (fi,HYDRUS) would be 
compared to actual period mean fluxes in the field (fi,actual):  
 
 𝑓𝑖,HYDR𝑈𝑆+ 𝜀𝑖,𝐻𝑌𝐷𝑅𝑈𝑆=𝑓𝑖,𝑎𝑐𝑡𝑢𝑎𝑙  (1) 
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The HYDRUS period-wise modeling errors εi,HYDRUS would then be compared to the actual 
flux to assess overall modeling error. However, fi,actual is not measured in field flux studies. It 
is unknown. Instead, measured air concentrations in conjunction with a model are used to 
estimate fi,actual. Two common modeling approaches used to estimate 𝑓𝑖,𝑐𝑡𝑢𝑎𝑙 are vertical 
profile techniques (e.g. the aerodynamic method, Majewski, 1995), or back-calculation methods 
using air-dispersion models such as the Environmental Protection Agency’s ISCST3 as was done 
in the LHS study. A comparison between HYDRUS and either type of data amounts to 
comparing predicted fluxes of two models. For the back-calculation method used in the LHS 
study, the comparison takes the form:  
 
  𝑓𝑖,HYD𝑅𝑈𝑆+ 𝜀𝑖,𝐻𝑌𝐷𝑅𝑈𝑆=𝑓𝑖,𝑏𝑎𝑐𝑘_𝑐𝑎𝑙𝑐+ 𝜀𝑖,𝑏𝑎𝑐𝑘_𝑐𝑎𝑙𝑐   (2) 
 
Where fi,back_calc is the mean back-calculated flux estimate for sampling period i and 
εi,back_calc is the corresponding period-wise error compare3d to the unknown actual period 
mean flux. It is apparent from Eq. 2 that any meaningful evaluation of HYDRUS (i.e. 
εi,HYDRUS) requires estimates of εi,back_calc. Flux estimation methods that do not provide an 
estimate of error will limit the ability to make comparisons between HYDRUS-estimated and 
back-calculated estimated flux. 
 
We had hoped to utilize the stochastic simulation results to estimate εi,back_calc. However, we 
now believe that performing this exercise properly requires nearly certain knowledge of the 
‘true’ flux for each period. Otherwise, the stochastic simulations are not being compared to the 
real thing. The back-calculation procedure relies on the fundamental Gaussian equation which 
expresses a proportional relationship between the flux and estimated concentration. All other 
features such as the geometry (that is the positional relationship between the source and the 
receptor), wind direction and speed and stability classification are fixed for that hour which is 
being simulated. However, errors of two broad kinds can affect ISCST3 estimates. The first kind 
of errors are model misspecification errors, where the model does not accurately describe the 
physical scenario. For example, the way that ISCST3 expresses the impact of stability classes 
may be incorrect in certain meteorological situations. A transient morning low-level inversion 
may not be captured by the ISC hourly meteorological summaries.   
 
Another example of misspecification error is the possibility of nonuniform flux across the field. 
When using ISCST3 for back-calculation, a uniform flux is assumed. But nonuniform, high 
fluxes in proximity to specific samplers could increase measured concentrations in those 
samplers and affect the regression results between the modeled and measured concentrations. 
The nonuniformity of the flux could only be ascertained if flux measurement systems were able 
to measure flux with a much higher degree of spatial resolution. Off-field air monitors integrate 
measurements wide areas on the field and cannot distinguish hot-spots.   
 



Randy Segawa  
January 18, 2013 
Page 4 
 
 
 
Another possible misspecification error, analogous to spatial nonuniformity of flux, is temporal 
nonuniformity of flux. A common pattern after fumigation is higher flux earlier on and then 
declining flux later. Within a measurement period, flux is assumed to be relatively constant for 
purposes of back-calculation. If not, then some hourly meteorological conditions are ‘weighted’ 
more heavily (during higher flux) over others (lower flux) and, as a consequence, the unweighted 
simulation will not properly estimate the average concentration. In practice, field sampling 
schemes often utilize shorter time periods in the periods immediately following fumigation in 
order to avoid sampling over large flux changes. Later on, the sampling periods are lengthened, 
reflecting the slower change in flux with the passage of time. 
 
ISCST3 does not realistically represent the downwind movement of source pollutants. The 
Gaussian equation has been described as a ‘lighthouse’ model. That is, the predicted downwind 
air concentrations are modeled as though they occur instantaneously with each changing hour. 
There is no passage of time reflecting the movement of molecules from the field to downwind 
locations. Thus ISCST3 does not capture realistic downwind plume movement. Other models 
have attempted to incorporate a more dynamic plume movement (Scire et al. 2000). 
 
The second kind of error relates to the nature of Gaussian plume prediction. The ISCST3 model 
is designed to predict the ensemble mean concentration. This predicted ensemble mean will 
differ somewhat from any individual realization, in particular from the actual realization which 
occurred during an actual monitoring period. That realization is only one of a theoretically 
infinite number of realizations making up the ensemble. Within a given hour the same average 
wind direction and wind speed could be attained by many different time series. Each different 
realization may produce a slightly different hourly average concentration at a receptor. If it were 
possible to sample repeatedly using different realizations, but each having the same average wind 
speed and direction, then in theory the model would predict that average concentration. It is 
difficult to estimate or measure the variance for this kind of error. 
 
Because of these two types of errors and because we do not have highly certain flux 
measurements, we cannot use this stochastic analysis to estimate εi,back_calc. 
 
B. Flux estimation procedures using the back-calculation method in the Lost Hills Study 
 
After a preliminary step, judging data sufficiency, the back calculation method used in Ajwa and 
Sullivan (2011) starts with a simple linear regression which yields a slope and an intercept 
(Figure 1). A series of tests and procedures may lead to a second regression where the regression 
is forced through the origin (no intercept) or the calculation of the mean measured over mean 
modeled, in order to obtain a multiplicative factor to adjust the assumed flux in the ISCST3 
model. In contrast the DPR method utilizes sorting when the initial regression is not significant. 
If sorting still does not yield a ‘significant’ regression, then mean measured over mean modeled 
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is used (Figure 2). The actual spreadsheets in Ajwa and Sullivan (2011) utilize a significance 
level of 0.054. DPR utilizes a significance level of 0.05. 
 
In both Sullivan’s and DPR procedures, the chosen significance level is a screening value used to 
classify whether the original regression was statistically significant. When a regression is forced 
through the origin, or when the regression is performed on sorted values, the p value which 
results is not a true p value in a conventional sense of the term; hence we are describing it as a 
screening significance level.   
 
For example, after forcing a regression through the origin, the ‘significance’ level can be 
misleading (Figure 3). In this example X and Y have no actual functional relationship with the  
9 x,y pairs placed at nodes on a square grid. Ordinary least squares regression (OLR) gives 
completely nonsignificant results (p>0.9). However, by forcing through the origin, EXCEL 
reports a significant regression (p<.002) with a high R2 of 73% (Figure 3). Furthermore, the 
slope error is 0.18, only 20% of the fitted slope of 0.86 – even though no true relationship 
between X and Y exists (r = 0.00). Given these results the physical interpretation is potentially a 
problem and a significance level does not reference the same kind of probability as in the OLR 
with slope and intercept.   
 
The DPR methodology has its own problems. The sorting method will typically lead to a 
‘significant’ regression. That is, p<0.05. However, the meaning of this statement is called into 
question because simply generating random numbers and sorting them will more often than not 
lead to a ‘significant’ p value, when no underlying relationship exists. In a 10,000-trial 
simulation where x values were simulated as uniform random between 0 and 10 and y values 
were simulated as normal mean 5 and standard deviation 1.0 (no correlation between x and y), 
5% of the trials yielded significant OLR regressions. This is exactly what would be expected 
with completely random data since the significance level is set so that Type I errors (the 
probability of falsely rejecting the null hypothesis) occur in 5% of the trials. However, after 
sorting the x and y values and recalculating the regression, 100% of the regressions were 
statistically significant. Thus in both methods (forcing through the origin or sorting), the 
significance level is being used as a screening procedure to assess goodness of regression fit, but 
can be misleading for the reasons described above. 
 
These two contrasting pathway for analyzing field study results in order to estimate flux involve 
four basic analysis approaches: OLR (simple linear regression with slope and intercept), OLR 
with no intercept (simple linear regression but forced through the origin), sorting and then 
regressing, and [meanY/meanX] (divide the mean of measured concentrations by the mean of the 
ISCST3-modeled concentrations). We propose a stochastic approach for comparing the 
variability and bias amongst these four basic statistical procedures for estimating the slope. 
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Methods for stochastic examination of back-calculation  
 
The back-calculation method assumes 
 
 i iF LT=   (3) 
 
Where Fi is the actual flux density for period i, T is the assumed flux density used in the ISCST3 
model to simulate this period, and Li is the constant of proportionality between the actual flux 
density and assumed flux density which is needed to simulate the period concentrations. 
 
Because the Gaussian model assumes a proportional relationship between flux and concentration, 
there is a proportional relationship between each measured concentration at a particular sampler 
during a particular period and the ISCST3 estimate for that sampler during that period and the 
constant of proportionality is the same as in equation (3). 
 
 ij i ijM L C=   (4) 
 
Where j is the jth sampler during the ith period, Mij is the measured concentration at sampler j 
during the ith period and Cij is the ISCST3 predicted concentration (based on the assumed flux T) 
at sampler j for the ith period. 
 
The goal of the back-calculation method is to estimate Li for each period and to estimate the 
‘true’ flux with equation (5). The procedural pathways outlined in Figures 1 and 2 are  
comprised of four basic methods for estimating Li: OLR, OLR forcing through origin, sorting, 
and [meanY/meanX]. Sources of error in the back-calculation procedure may include:  
(1) inhomogeneous spatial or temporal flux during the period, (2) representation of each hour 
using mean wind direction and wind speed, (3) chemical analytical variability, (4) idiosyncrasies 
of the particular field such as presence of structures, berms, nearby crops or other physical 
features which may alter air flow over the field in ways not captured by the meteorological  
data, (5) transient meteorological events not captured by the meteorological summaries,  
(6) inadequacy of the stability class or misclassification of stability class in relation to the actual 
field conditions, and (7) limits to chemical analysis and the representation of nondetects.   
 
To represent the sampling and estimation procedures, the following representational model was 
adopted: 
 
 Y LX=   (5) 
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Where Y represents measured values, L is a random variable with a defined arithmetic mean and 
X is a random variable representing the ISCST3-generated estimates.  
 
Two similar approaches were used for the stochastic simulation analyses. The first approach  
used 1,3D – based statistics from the 42 periods of field 1 in LHS study and the second used 
PIC-based statistics from the 42 periods of field 1. The two approaches differed in some details 
and will be described in separate sections. 
 
1,3D Stochastic Simulations 
 
X is a random variable distributed as described below based on analysis of period 1-42 field 1 
1,3D air concentrations, while L is a random variable with a defined arithmetic mean = 100,  
and a distribution and standard deviation chosen such that the resulting “within sampling 
interval” Y distribution is similar to the within interval 1,3D period 1-42 ISCST3-modeled air 
concentrations. For each of the 8 (X,Y) pairs in each of the 1000 simulated monitoring intervals, 
X and L were independently sampled from their respective sampling distribution to obtain Y 
(Eq. 5) 
 
The 1000 simulated monitoring intervals of 8 (X,Y) data pairs were used to compare OLR, 
sorted regression, forced origin regression and [mean Y/mean X] methods for estimating the 
(known) L. Method comparisons are based on (a) how accurately each method estimated mean 
L, and (2) the standard deviation of those mean L estimates. The methods were compared using 
subsets of the 1000 L,Y interval data segregated as to (a) significant OLRs, (b) insignificant 
OLRs, and (c) OLRs with intercepts significantly different than zero regardless of the 
significance of the overall regression. 
 
1,3D Selection of Sampling Distributions  
 
In selecting distributions for X and L, the objective was to obtain (X,Y) data that were ‘similar’ to 
actual ISCST-modeled (X) and measured (Y) air concentration data obtained in LHS. To assess this 
we used periods 1-42, field 1, 1,3D data (n=668 measured/modeled air concentration data pairs). By 
similar we mean:  
 
• The stochastically sampled X should have similar within interval μ and σ as the ISCST3-modeled 

data, and a similar distributional shape based on a cumulative frequency plots of standardized X 
and modeled data.  Each standardized datum was calculated as [(Xi,j-μi)/σi] where μi is the 
interval i mean X, σi is the interval i standard deviation of X, and Xi,j is the jth datum in the ith 
interval.  
 



Randy Segawa  
January 18, 2013 
Page 8 
 
 
 
• Stochastically sampled Y (each based on the product of a sample from the L distribution and the 

X distribution, equation 5) should have a similar coefficient of variation (CV = σ/μ) as the 
measured data, although the mean will differ from measured data since the mean is determined 
by L’s chosen mean of 100. The CV of Y was approximately matched to the CV of measured air 
concentration data by ‘tuning’ the standard deviation of L. The overall similarity of Y and 
measured air concentration data was evaluated qualitatively using cumulative frequency plots and 
probability plots of the standardized Y and measured air concentration data.  
 

• Distribution of correlations between X and Y should be approximately equal to that for measured 
and modeled data. 

 
1,3D Results 
 
A. Sampling Distributions 
 
Distribution of X: We obtained a ‘nearly best-fit’ to the ISCST3-modeled data from the LHS using 
beta distribution with minimum, maximum, alpha and beta of 0, 35.14, 1.066 and 6.537, respectively. 
These distribution parameters yielded a mean of the ‘within interval’ means,standard deviations and 
CVs for the 1000 synthetic 8 member X data vectors of 4.87, 3.87 and 0.79, respectively. These 
compare favorably with the mean within interval means, standard deviations and CVs for period 1-42 
ISCST3 field 1 data of 4.46, 3.55 and 0.80 (Figure 4).   
 
Distribution of actual 1,3D concentrations, L and the calculated Ys (Eq 3): The Anderson-
Darling test statistic for normality of the standard normal deviates of the log-transformed 
measured air concentrations was large enough to reject the null hypothesis of normality  
(Figure 5). The more general omnibus D’Agostino-Pearson K2 test (d’ Agostino et al. 1990) 
indicated insufficient evidence to reject the null hypothesis (p=0.105). 
 
Based on the latter normality test and linearity of the plot in Figure 5, we concluded the 
measured air concentration data were “close” to log normal, and so selected a lognormal 
sampling distribution for L (thereby obtaining a log normal distribution for Y). The arithmetic 
mean for that distribution was defined as 100. We found that a standard deviation of 160 
provided within interval Y distributions that were generally similar in shape to those of the 
measured data (Figure 6). The mean within interval CV was 1.29 for the untransformed Y data, 
comparing favorably to the mean within interval CV of 1.36 for the measured air concentrations. 
 
Using the sampling distributions of X and L described above, 1000 data sets consisting of 8 pairs 
each of X,Y data were created using Monte Carlo sampling. The resulting X,Y data had similar 
CVs and correlation structure as the modeled and measured 1,3D air concentrations in LHS Field 
1, periods 1-42. The mean within-interval correlation between the Monte Carlo Y and X was 
0.53 (N=1000 intervals), while that between the measured and modeled field 1 1,3D air 
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concentrations was 0.55 (N=42 intervals). These X,Y data were the used to assess the accuracy 
of the 4 methods for estimating the known L. 
 
B. Comparison of Flux Estimation Methods 
 
Significant OLRs: Although the correlations between X and Y were similar to those between 
measured and modeled, only 33% (334 of 1000) of the simulated intervals yielded significant 
OLRs as compared to 71 percent among the 42 1,3D field 1 intervals. This is attributable to the 
larger number of measured versus modeled data pairs (16 pairs for Field 1 periods versus 8 pairs 
for the simulated X,Y data). Among methods, the [mean Y/mean X] procedure yielded a mean 
estimate for L of 105 (96-114, 95% CI), that was closest to the true value of 100 (Figure 7); the 
95% CI for the remaining 3 methods did not contain 100. In addition, the variance of the mean 
[mean Y/mean X] was significantly lower than the OLR and sorted OLR methods (e.g., Figures 
7 and 8). In a subset of the significant OLRs with r>0.90 (N=88; results not shown), the outcome 
was similar; the [mean Y/mean X] method yielded more accurate and less variable estimates of L 
than the other methods. 
 
Insignificant OLRs and Significant Intercepts: Two other cases are illustrated here: regressions 
that were not significant (p>0.05), and regressions with significant intercepts regardless of the 
overall significance of the regression.  In both cases, the [mean Y/mean X] procedure 
outperformed the remaining three procedures with more accurate and less variable L estimates 
(Figures 9-11). 
 
Other Distributions Examined: A variety of other distributions for X and L in Eq 3 were also 
used to synthesize additional X,Y interval datasets. These included lognormal, left-censored  
(at zero) normal and gamma distributions for L. Without exception, the [mean Y/mean X] 
procedure yielded the most accurate and least variable estimates of L. 
 
C. Slope Estimation and Error Estimates: Simulated data based on a Specific Sampling 

Interval 
 
We evaluated (a) the slope estimation methods previously discussed, and (b) a method for  
estimating error using simulated (X, Y) data that were similar to LHS field 1 interval  
11 measured/modeled 1,3D air concentrations. Interval 11 was chosen because the CV for the 
interval 11 measured data (1.44) was similar to the mean within interval CV (1.36) over all  
42 intervals; hence interval 11 was considered “representative” from that standpoint.  
 
The procedure for creating the 1000 simulated X,Y data sets was generally similar to that previously 
described with the following exceptions. The sampling distributions for the random variables X and 
L in Eq. 6 were the beta distribution and log normal distribution, respectively, as before. However, 
the parameters of the distributions were chosen such that the resultant means and CVs of X and Y 
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closely matched sampling interval 11 modeled and measured mean and CVs (Table 2). We adjusted 
the parameters of the X beta distribution and the slope L log normal distribution by trial and error 
until X,Y means and CVs from samples of those distributions were close to those for interval 11. The 
‘optimized’ parameters were for the beta distribution were minimum = 0, maximum = 13, alpha = 
0.5, and beta = 1.2, while those for the L log normal distribution were arithmetic mean = 5.75 and 
standard deviation = 7.75. One thousand sets of X,Y data were then created using Monte Carlo 
sampling as before.   
 
Comparison of Slope Estimates by Method: The relative accuracy and variability of the [mean 
Y/mean X], OLR and sorted OLR methods to predict the true mean of L (slope) was similar to the 
previous examples: the [mean Y/mean X] yielded the most accurate and least variable estimates 
regardless of whether a significant correlation existed among the X and Y variables (Figure 12).    
 
The OLR residuals were strongly heteroscadastic, similar to the pattern observed for many of the 
actual sampling intervals (Figure 13). As a result, meaningful standard errors for the slope cannot be 
determined using OLR. 
 
PIC Stochastic Simulations 
 
These simulations followed roughly the same procedures as the 1,3-D simulations and used 
equation 5 as a starting point.   
 
The PIC distribution for X 
 
The 42 PIC periods were stored in an Excel worksheet with indices consisting of period and 
sampler. Most periods had a full 16 samples for Field 1, though a few had 15 samples. The ‘X’ 
column consisted of all of the ISCST3 estimates from Ajwa and Sullivan (2010) for Field 1. This 
column was fit using Oracle Crystal Ball, Fusion Edition Release 11.1.2.000 (32-bit). The best 
fitting distribution was a beta distribution with minimum -0.56, maximum 35.14, Alpha 1.06618, 
Beta 6.53668. As a sidenote, the CB documentation refers to this as the “Beta Distribution”. In 
fact, it is the beta probability density function. If one integrates the beta probability density 
function, it can be compared to the built-in beta.dist worksheet function in Excel which gives the 
beta cumulative distribution function. Note that the beta distribution function is only defined on 
the interval [0,1] so that data will have to be mapped from [min,max] to [0,1] using the obvious 
linear transform. One can also approximate the CB beta density function by finding the 
derivative along the beta.dist cumulative distribution function given by Excel. 
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The CB distribution fitting results gave the lowest Anderson-Darling and Kolmogorov-Smirnov 
fitting metrics to the beta distribution compared to the other available distributions in CB and 
hence was chosen as the distribution for representing the ISCST3 PIC modeled values (X) for 
field 1 from the LHS study. 
 
The PIC distribution for Y (measured PIC concentrations) 
 
Of the 42 periods in Field 1, 22 gave significant (p<.05) regressions and 3 showed significant 
intercepts (Table 3). This amounted to 52% of the period with significant regressions and 7% 
with significant intercepts.   
 
The mean within period coefficient of variation of the measured PIC concentrations was 1.46. 
Using equation 5 and a lognormal distribution with a mean of 1 (the 1,3D section used a mean of 
100) and simulating 16 X,Y values for each period (the 1,3D section simulated 8 pairs per 
period), we simulated 1000 periods at each of several standard deviation values of the lognormal 
ranging from 1.2 to 2.2 (Table 4). For each stochastically simulated period, we calculated 
whether the initial regression was significant, whether the slope was significant and the 
coefficient of variation of the Y (‘measured’) values. The fraction of significant regressions 
declined as the standard deviation increased. The within-period coefficient of variation for the Y 
values increased and the fraction of significant intercepts was largely unchanged as the standard 
deviation of the underlying distribution increased. 
 
In order to find a standard deviation which reflected both the fraction of significant regressions 
and within-period CVs from the LHS study, we separately fit the significant regression fraction 
as a function of the standard deviation and fit the within-period CV as a function of the standard 
deviation using Table Curve 2D V5.0, their equation 34: ln(y)=a+b*ln(x). In both cases, the r2 
values exceeded 99.9%. The resulting equations (untransformed) were 
 
 ( 0.17845) ( 0.68456)*fractsig e SD− −=   (6) 
 
 0.28557 0.32575*withinCV e SD=   (7) 
 
We set up the following equation for optimization which measures the distance between the 
predicted fraction of significant regressions and the actual fraction and adds to that the distance 
between the predicted within period CV and the actual within period CV: 
 
 ( 0.17845) ( 0.68456) 2 0.28557 0.32575 2( * 0.52) ( * 1.46)goal e SD e SD− −= − + −  (8) 
 
We used Excel equation solver to find the minimum for goal. The minimum was achieved at 
SD=1.566.  At this value for the standard deviation, the mean fraction of significant regressions 
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was calculated to be 0.615 and the mean within period CV was calculated to be 1.54. 
Approximate 95% confidence intervals for the fraction of significant regressions (0.37 to 0.68) 
and for the CV (1.32 to 1.60) both encompass the target values of 0.52 and 1.46, respectively. 
Therefore, the lognormal distribution for L used a mean=1.0 and SD=1.566 for stochastic 
simulation to compare the back-calculation methods. 
 
The PIC analysis utilized a somewhat different approach to the stochastic simulation than the 
approach used in the 1,3-D analysis. The latter set up 1000 rows in an Excel spread sheet, each 
row containing the X,Y values to be regressed.  Summaries were calculated based on these 1000 
trials. For the PIC analysis, Crystal Ball was used to iteratively sample from the distributions, run 
the analyses and statistically summarize the results. On each iteration, 16 X,Y values were 
produced from the specified distributions, OLR was calculated, a regression through the origin 
was calculated, the mean Y over mean X was calculated, and the two vectors were sorted and 
regression performed on the sorted vectors. Crystal Ball has a ‘forecast’ feature which designates 
a cell to be the collector of statistics on whatever function of the simulated values is desired. For 
the PIC analysis Forecast cells were used for the means, medians, standard deviations and within 
period CVs. 
 
In order to separate the two cases where the initial OLR was statistically significant or not, 
Crystal Ball provides a filter procedure. However, once the filter is defined, statistics on the 
discarded cases are lost. Therefore, two separate 10,000 run trials were conducted, one to 
examine the initially significantly OLRs and one to examine the initially non-significant OLRs. 
This resulted in 6186 cases with significant OLR and 3855 cases where the initial OLR was not 
significant (Table 5). This fraction of significant OLRs closely reflected the predicted fraction  
of 0.615 based on the SD of the lognormal distribution that was determined in the optimization 
of equation 8, and was comparable to the actual observed data (22 significant OLRs/42  
periods = 0.524, Table 3). For the synthetic Y values, the average of the within period CVs  
was 1.54 which was the expected value based on equation 8 and the comparable to the measured 
value of 1.46. Similarly, for initially nonsignificant OLR, the mean within period CVs for the 
synthetic Y values was 1.55. 
 
The mean for the [meanY/meanX] estimator was 1.0 regardless of whether the OLR was initially 
significant or not. The OLR method tended to overestimate the mean by 22% amongst the 
significant OLR cases and underestimated slopes by 35% for the not significant cases. Sorted 
OLR overestimated the true value by 58%, regardless of the significance of the initial OLR. The 
forced OLR overestimated the mean by 10% when the OLR was initially significant, but 
underestimated by 15% when the initial OLR was not significant. In the DPR procedure if the 
initial regression is not significant, the next step would be sorting, and thus overestimation may 
result.  In Sullivan’s procedure, the next step following an initially nonsignificant OLR is forcing 
through the origin, which would result in some underestimation, according to the results of these 
stochastic simulations. 
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The standard deviations of the slope estimates for each method were also consistent with the 
1,3D simulations. The [meanY/meanX] method generally had the lowest standard deviation and 
coefficient of variation amongst the four methods, regardless of the initial significance of the 
OLR. For OLR the CV in the initially significant cases was 0.99 (100% as a percentile). The CV 
was higher than the other methods, though the absolute SD for the OLR was lower than 
corresponding values for the sorting method. Across the spectrum of initially significant versus 
initially not significant OLRs, the the [meanY/meanX] estimator performed best. 
 
Effect of additive constant in the PIC simulations 
 
Equation 5 was modified by adding a constant: 
 
 
 Y LX K= +   (9) 
 
The Gaussian equation embodies a proportional relationship between flux and concentration. 
Consequently, based on this equation, the expectation would be that K=0. However, the denial  
of an intercept violates statistical procedures and may lead to grossly incorrect conclusions 
(Figure 3). Therefore, we decided to examine the performance of the four methods in the 
presence of a known intercept. The PIC-based stochastic approach was used.  
 
In order to determine how large to make the constant, K, the 10%, 30% and 50% percentile 
values from the synthetic measured values distributions were determined for both initially 
significant OLR (five estimates, left hand side of Table 6) and initially not significant OLR  
eight estimates, right hand side of Table 6). The differences at each percentile were not great and 
so were averaged together to determine the constant K. We used the 10%, 30%, and 50% 
percentile values (ie. K=0.05, 0.58, 1.54) as a constant in equation 9. Altogether in this additive 
constant section, we conducted six stochastic simulations (each with n=1000) to compare the 
performance of the four methods. There were six simulations when the three levels of K were 
combined with either significant or nonsignificant OLR (Table 7). 
 
Table 7 provides various statistics on each of the six simulation scenarios. The Trials variable  
is a count of the number of simulations passing the filter and is the sample size upon which the 
statistics are based. The filter for the left side was regression significant (p<0.05) and the right 
side was regression not significant (p>0.05). The filtered values variable is the number of  
trials not satisfying the filter criteria. Within each of the six cases the Trials plus Filtered  
Values = 1000.  
 
The CV of ‘measured’ concentrations refers to the within period coefficient of variations of the 
Y values generated by simulating equation 9. These synthetic Y values correspond to the 
measured concentrations in the LHS study. Each CV was calculated based on 16 simulated 
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values. For both significant and nonsignificant OLR, these CVs gradually decreased as K 
increased. This makes sense since the additive constant would tend to reduce the variance  
of the resulting Y values. 
 
The Reg. Sign Flag and Int Sign. Flag stand for Regression significance flag and intercept 
significance flag. These were 0,1-valued functions in the spreadsheet. The Reg.Sign. Flag was  
0 when the initial OLR was not significant and 1 when it was. The Int Sign Flag was 0 when  
the intercept was not significant and 1 when it was. For the Reg. Sign Flag on the initial OLR 
Significant side, the fraction was always 1.00 and conversely was 0.00 on the nonsignificant side 
of the table. This was included as a check that the Crystal Ball filtering procedure was being 
correctly applied. 
  
The Int Sign. Flag mean represents the fraction of cases where the intercept was statistically 
significant. On both sides of the table, this fraction increased as K increasee. However, the 
fraction was always larger on the OLR not significant side. For example, with K=1.54, it was 
0.28 for the nonsignificant OLR trials compared to 0.19 for the significant OLR trials (Table 7, 
i.e. 28% compared to 19%). These results mirror the actual data for PIC in Field 1 where 2 of the 
20 nonsignificant OLR periods (10%) had significant intercepts compared to only 1 of the 22 
significant OLR periods (5%) (Table 3). 
 
As in the case with no additive constant (equation 5), sorting generally seemed to overestimate 
the true slope value of 1.0, more so than the other methods   In addition standard deviation for 
the slope from the sorted regression procedure was larger than any of the other methods, 
regardless of the significance of the OLR (Table 7, Figure 14). When the OLR was significant, 
the slope from the OLR provided reasonable estimate of the true slope and was stable across 
increasing the additive constant. 
 
Increasing the additive constant increased the average slope for the force through origin method. 
When the initial OLR was significant, the forcing strategy increased the average slope estimates, 
up to a mean of 1.3 when K was at the 50th percentile.  When the initial OLR was not 
significant, forcing through the origin resulted in estimates closest to the true value at the highest 
K amongst the four estimation procedures. 
 
The differences between the methods in this PIC analysis with the additive constant were all 
generally within or comparable to the standard deviations (Figure 14).   
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Conclusions 
 
While this work is preliminary, it presents a compelling perspective on the current procedures  
for back-calculation to determine flux. The [meanY/meanX] approach gave the best results in 
terms of accuracy and precision. The [meanY/meanX] method only showed a large bias when 
the additive intercept was set at the rather extreme value of the 50th percentile of the synthetic 
measured values. Over the range of conditions we looked at, the [meanY/meanX] method 
estimated the mean slope with the least bias and exhibited the lowest variance. Sorting generally 
performed poorest, both in terms of accuracy and precision. The ordinary least squares 
regression even in the significant regression cases, did not perform as well as the 
[meanY/meanX] in terms of bias and accuracy. 
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Table 2. Comparison of (X,Y) and interval 11 1,3D (modeled, measured) means and 
Coefficients of Variation. 

 
 
 
 
 
 

 

 Mean X 
(N = 1000) 

Modeled air conc  
(interval 11) 

Mean Y 
(N = 1000) 

Measured air conc  
(interval 11) 

Mean 3.87 3.93 22.7 21.2 
CV 0.94 1.03 1.33 1.44 

Field
Size 
(Acres)

Tarp Cut 
(days after 
application)

Total 
Monitoring 
Periods

1 8 16 42
2 2 10 30
3 2 5 20
4 2 5 20

Table 1.  Overview of study fields. Each field 
received an application of PicClor 60 (60% PIC, 
40% 1,3D).

Intercept Not Significant Significant Total
Not Significant 18 21 39
Significant 2 1 3
Total 20 22 42

Slope

Table 3. Period breakdown for Field 1 chloropicrin 
regressions by significance of slope and intercept.
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SD for L 
(lognormal)

Mean Fraction 
Significant 

Regressions

Mean 
Fraction 

Significant 
Intercepts

Average 
Within 

Period CV
1.2 0.74 0.02 1.41

1.25 0.72 0.02 1.43
1.35 0.68 0.02 1.47
1.5 0.63 0.02 1.52
1.7 0.58 0.02 1.58
1.9 0.54 0.02 1.64
2.2 0.49 0.02 1.72

Table 4.  Effect of increasing standard deviation in the 
lognormal distribution (L) on fraction significant 
regressions, intercepts and within-period CVs for PIC 
calculations.

Initial OLR 
significant 
(p<0.05)

Statistic OLR
Sorted 

OLR
Forced 

OLR
Trials 6186 6186 6186 6186
Mean 1.00 1.22 1.58 1.10
Median 0.88 0.92 1.26 0.90
SD 0.56 1.22 1.35 0.84
CV 0.56 0.99 0.85 0.77

Initial OLR 
not 
signficant 
(p>0.05)

Trials 3855 3855 3855 3855
Mean 1.01 0.65 1.59 0.85
Median 0.89 0.47 1.27 0.72
SD 0.53 0.67 1.19 0.55
CV 0.52 1.04 0.75 0.65

Table 5. Comparison of back calculation methods based on PIC statistics 
and equation 5, using 16 X,Y samples per period.  Each trial was 
comprised of 16 pairs of simulated values using equation 5.  The average 
CV for the within period Y values was 1.54 and 1.55 for initially significant 
and initially non-significant OLR groups, respectively.

Y
X
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Percentile m01 m02 m03 m04 m05 avg m01 m02 m03 m04 m05 m06 m07 m08 avg
grand 
avg

Percent
ile

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0%
10% 0.03 0.03 0.03 0.03 0.02 0.03 0.07 0.06 0.06 0.06 0.04 0.07 0.06 0.06 0.06 0.04 10%
20% 0.23 0.23 0.24 0.25 0.22 0.23 0.33 0.33 0.30 0.31 0.31 0.30 0.31 0.35 0.32 0.28 20%
30% 0.52 0.52 0.53 0.53 0.49 0.52 0.67 0.65 0.61 0.63 0.61 0.62 0.64 0.69 0.64 0.58 30%
40% 0.90 0.87 0.92 0.92 0.88 0.90 1.11 1.13 1.01 1.02 1.03 1.02 1.09 1.15 1.07 0.98 40%
50% 1.43 1.45 1.47 1.48 1.44 1.45 1.66 1.69 1.54 1.57 1.63 1.59 1.62 1.75 1.63 1.54 50%
60% 2.20 2.18 2.29 2.29 2.23 2.24 2.48 2.43 2.38 2.36 2.38 2.39 2.44 2.68 2.44 2.34 60%
70% 3.55 3.44 3.54 3.57 3.47 3.51 3.68 3.67 3.57 3.38 3.58 3.77 3.46 3.89 3.63 3.57 70%
80% 5.87 5.79 5.79 5.91 5.86 5.84 5.92 5.91 5.67 5.17 5.55 5.94 5.47 6.32 5.74 5.79 80%
90% 10.53 10.48 10.83 10.79 10.87 10.70 10.98 10.79 9.99 9.86 10.23 11.27 10.34 11.52 10.62 10.66 90%

100% 152.5 186.6 157.8 265.8 260.9 204.7 216.2 168.4 354.9 258.8 158.9 316.7 382.8 252.9 263.7 234.2 100%

Initial OLR significant Initial OLR not significant
Table 6. Data used to estimate percentiles for simulated measured PIC concentrations (Y variable in equation 5)
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K=0.05, 10th 
percentile of 
measured values

CV of 
'measured' 

conc.

Reg. 
Sign. 
Flag

Int Sign. 
Flag

meany 
over 

meanx

 
force 

through 
origin OLR

slope-
sorted

CV of 
'measured' 

conc.

Reg. 
Sign. 
Flag

Int 
Sign. 
Flag

meany 
over 

meanx

 
force 

through 
origin OLR

slope-
sorted

Trials 647 647 647 647 647 647 647 392 392 392 392 392 392 392

Mean 1.49 1.00 0.01 0.99 1.06 1.15 1.48 1.52 0.00 0.03 0.98 0.82 0.61 1.52

Median 1.40 1.00 0.00 0.87 0.88 0.86 1.18 1.41 0.00 0.00 0.89 0.72 0.47 1.26

Standard Deviation 0.44 0.00 0.10 0.49 0.67 0.90 1.05 0.48 0.00 0.17 0.46 0.47 0.55 1.06

Coeff. of Variability 0.29 0.00 9.57 0.49 0.63 0.79 0.71 0.31 --- 5.89 0.46 0.57 0.91 0.70

Filtered Values 353 353 353 353 353 353 353 608 608 608 608 608 608 608

K=0.58, 30th 
percentile of 
measured values

Trials 635 635 635 635 635 635 635 384 384 384 384 384 384 384

Mean 1.32 1.00 0.06 1.14 1.16 1.19 1.51 1.32 0.00 0.12 1.13 0.92 0.65 1.63

Median 1.24 1.00 0.00 1.01 0.99 0.93 1.24 1.21 0.00 0.00 1.01 0.80 0.46 1.33

Standard Deviation 0.41 0.00 0.23 0.54 0.72 0.97 1.19 0.47 0.00 0.32 0.56 0.56 0.66 1.33

Coeff. of Variability 0.31 0.00 4.08 0.47 0.63 0.81 0.79 0.36 --- 2.75 0.49 0.61 1.02 0.81

Minimum 0.52 1.00 0.00 0.44 0.30 0.17 0.14 0.44 0.00 0.00 0.40 0.22 -0.05 0.28

Maximum 2.96 1.00 1.00 6.04 6.88 8.93 12.60 3.25 0.00 1.00 5.74 4.64 5.55 15.78

Filtered Values 365 365 365 365 365 365 365 616 616 616 616 616 616 616
K=1.54, 50th 
percentile of 
measured values

Trials 619 619 619 619 619 619 619 375 375 375 375 375 375 375

Mean 1.11 1.00 0.19 1.39 1.30 1.22 1.66 1.15 0.00 0.28 1.40 1.08 0.67 1.65

Median 1.04 1.00 0.00 1.27 1.13 0.95 1.33 1.07 0.00 0.00 1.29 0.95 0.47 1.25

Standard Deviation 0.41 0.00 0.39 0.49 0.68 0.96 1.29 0.45 0.00 0.45 0.64 0.77 1.01 1.48

Coeff. of Variability 0.37 0.00 2.07 0.35 0.52 0.79 0.78 0.39 --- 1.62 0.46 0.71 1.50 0.90

Minimum 0.41 1.00 0.00 0.64 0.41 0.19 0.28 0.48 0.00 0.00 0.54 0.33 -0.29 0.28

Maximum 3.19 1.00 1.00 5.41 8.07 11.02 13.06 3.49 0.00 1.00 9.33 12.56 16.33 21.49

Filtered Values 381 381 381 381 381 381 381 625 625 625 625 625 625 625

Initial OLR Significant Initial OLR Not Significant

Table 7.  Stochastic simulation results with additive constant, K, (equation 9) at three levels and results for significant initial OLR on the 
left and non-significant OLR on the right.  Trials are the number of cases satisfying the criterion and used to obtain the statistics.  
Filtered values are cases which were not used.  Highlighted cells are the mean slope estimate.  The true value for the mean slope was 
1.00.  See text for further explanation. 

Slope estimators Slope estimators
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Is {# x,y pairs with x 
and y >0.1 ug/m3}>2? NO 

Use substitution 
or interpolation 
for period 

YES 

Calculate regular regression 
giving Slope1 and Intercept. 
Is Slope1 significant 

 

YES 

NO 

BOX A 
Calculate regression 
with NO Intercept giving 
Slope2.  Is Slope2 
significant (p<.054)? 

YES NO 

Use Slope2 
Use 

Y
X

 
Is Intercept significant 
(p<.054)? NO 

Y
E
S 

Is Intercept > 25th 
percentile of measured 
values? 

NO 

Y
E
S 

Use 
Slope
1 

Go to 
BOX A 
 

Figure 1. Ajwa and 
Sullivan (2012) procedure 
for back calculation to 
estimate flux. Slope1 is 
derived from regression 
with intercept. Slope2 is 
derived from regression 
with no intercept (forced 
through origin). 
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Calculate regular regression giving Slope1 
and Intercept.  Is Slope1 significant 
(p<.05)? 

YES 

NO 

Sort x, sort y, calculate 
regression on sorted 
values giving Slope3. 
Is regression on sorted 
values ‘significant’ 
(p<.05)? 

YES NO 

Use Slope3 
Use 

Y
X

 
Use 
Slope1 

Figure 2. DPR procedure for back calculation to estimate flux. Slope1 is derived 
from regression with intercept. Slope3 is derived from regression of sorted y on 
sorted x values. 
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Figure 3. Example EXCEL 2010 “forced origin regression” output for regression of [1,1; 1,2; 

1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3]. OLR yields R2 = 0, significance = 1, slope = 0 for 
these data.   

 

Fig. 4. Probability and cumulative frequency plots of standardized “within interval” ISCST3 
modeled air concentrations and Crystal Ball generated X using a beta distribution for X.   
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Figure 4. Probability and cumulative frequency plots of standardized “within interval”  
ISCST3 modeled air concentrations from Lost Hills Study and Crystal Ball  
generated X using a best fit beta distribution for X.   
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Figure 5. Normal probability plot of 1,3D standardized ln (measured data), calculated using 

individual within interval means (of ln measured) and standard deviations. The mean 
is zero. 
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Figure 6. (a) Standardized measured air concentrations and Ys derived from Eq. 6 and  

(b) cumulative frequency of standardized measured concentrations and Y. Both Y  
and measured data standardized using within interval means and standard deviations.    
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Figure 7. Comparison of methods for estimating slope L using four methods. Estimates were 

generated for 334 of 1000 intervals that had significant regressions (r > 0.707).  
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Figure 8. Test of equal variance of L estimates by method. L estimates were generated for 334 

of 1000 intervals that had significant regressions (r > 0.707).  
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Figure 9. Comparison of methods for estimating L when OLRs were not significant. Reference 
line at Y = 100 = “true” mean of L. 
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Figure 10. Test of equal variance of L estimates by method. L estimates were generated for 666 

of 1000 intervals that had NO significant X,Y correlation (r < 0.707).  
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Variable         Mean   StDev  CoefVar 
mean Y/mean X  110.25  106.89    96.95 
OLR             163.2   301.7   184.84 
sorted OLR      197.3   286.9   145.37 
forced OLR     134.41  182.01   135.41 

 
 
Figure 11. Comparison of methods for estimating L of those OLRs with significant slopes 

(includes both significant and insignificant regressions; N = 365). Data were 
generated using same distributions of X, L as previously described, but were selected 
from an expanded set of synthetic X,Y data  (N = 15000) to obtain increased sample 
size. Reference line at Y = 100 = “true” mean of L.   
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Figure 12. Comparison of slope estimation methods for synthetic data based on specific 

sampling interval 11 for 1,3D. For this scenario, the 5.75 reference line (y-axis)  
is the “true” slope (the true population mean of L); error bars are 95% confidence 
intervals for the mean estimate. Intervals with significant correlations (r > 0.707; N = 
465), intervals with no significant correlation (N = 535). “mean_beta” is the mean of 
the individual trial slopes based on the samples drawn from the lognormal 
distribution for L in equation 5. The upper plot is the subset of nonsignificant 
correlations and the lower plot is the subset of significant correlations.   
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Figure 13. Residuals versus predicted Ys for the 1000 OLRs of the X,Y data used to compare 

error estimates by method. Data show heteroscadastic regression residuals.  
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Figure 14. Comparison of [meanY/meanX], Forced through origin, OLR and 
sorted methods of flux estimation for PIC-based stochastic 
simulations when there is an additive constant in the basic equation 
(equation 9). The true slope was 1.0. The additive constant ranges 
from the 10th to the 50th percentile of the simulated measured 
values. Note x-axis values offset for clarity. 


