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ABSTRACT 

Identifying areas vulnerable to ground water contamination by pesticides is 

desirable because pollution prevention policies could be developed for 

specific locations. Previous attempts to correlate predicted levels of vul- 

nerability with measures of the absence and/or presence of pesticide 

residues in well water have not been entirely satisfactory. Poor correla- 

tion between predicted level of vulnerability and occurrence of pesticide 

residues in well water may have been caused by assuming that only the leach- 

ing pathway was involved or by uncertainties in the use of well sampling 

data as an indication of vulnerability. An alternative approach was devised 

that produced classification algorithms based on climatic and soil data from 

known vulnerable (KV) sections. KV sections in California are defined as 1 

square mile areas of land where pesticide residue has been detected in well 

Mater samples and the detection attributed to nonpoint source agricultural 

applications. Clustering procedures were used to group similar KV sections 

first with respect to climate data and then with respect to soil data. 

Principal Components Analysis was used to construct soil profiles of the 

clusters. The profiles were used as the basis for a classification proce- 

dure to determ ine if soil propert ies of candidate sections with unknown 

vulnerability were similar to profiles developed for KV sections, Since 

this scheme is based only on data from KV sections, candidate sections with 

dissimilar profiles cannot be considered as non-vulnerable; they receive a 

status of non-classifiable. However, the process is flexible and it can 

revised to incorporate updated well sampling information. 



INTRODUCTION 

Identification of areas vulnerable to ground water contamination by pes- 

ticides is desirable because pollution prevention policies could be 

developed for specific locations. One approach to identifying vulnerability 

has been to: 1) devise a vulnerability index based on variables thought im- 

portant in facilitating pesticide movement to ground water, usually assuming 

the leaching pathway ; 2) stratify land areas based on the vulnerability in- 

dex; 3) obtain data on the detection of pesticide residue in well water; and 

4) use percentage of detections as a discriminator variable in analyses con- 

ducted to test correspondence with the vulnerability index. 

Tests conducted with indices derived from the DRASTIC model are an example 

of this approach. In DRASTIC, indices of vulnerability are derived from a 

series of weights and ratings of seven hydrogeologic variables which experts 

agreed were important determinants in leaching of pesticides to ground water 

(Aller et. al., 1985). The correspondence between the detection of pes- 

ticide residue in well water and DRASTIC indices, generated for county-wide 

areas, have been statistically tested in three studies (EPA, 1992; Balu and 

Paulsen, 1991; Holden et. al., 1992). None of the studies found a good cor- 

respondence between occurrence of residues and the DRASTIC scores. 

Problems related to well sampling may have caused unfavorable results with 

this approach. First, presence of pesticide residue in well water may not 

solely result from leaching through soil via the normal route of water per- 

colation. Observations of construction and quality of a well are usually 

made during a study to ensure that local streaming from the surface to 

ground water had not occurred, but movement to ground water may occur 
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through other pathways that are difficult to investigate. For example, col- 

lection of runoff water from rainfall or irrigation may be shunted to 

special drainage wells or to fast draining areas of soil. Contamination 

coula then result from an unexpected, route of water movement through the 

soil. Second, the probability of detectin)g pesticides in well water is com- 

plicated by the location. of the well in relation to depth and dire&ion of 

ground wate,r flow from contaminated areas. For example, a domestic well 

situated near and downstream (in terms of, ground water flow) of an agricul- 

tural field w,ould appear to be a good.candidate sampling site,because it 

should reflect local conditions. However, residue that has. leached from the 

nearby field may encounter ground water at a stratum above that tapped by 

the well causing the residue to bypass the well. Determining specifics of 

ground water flow and well location for each sampled well is usually not 

feasible when conducting. lar,ge-scale field..studies. 

Wilkersen et al., -* (1985) used an empirical discriminant analysis approach 

to produce a classification equation for vulnerability. Their approach was 

to: 1) identify land use, geographic, and well construction variable-s for l- 

square-mile areas,designated as sections in the Public Land Survey System 

(PLSS) (Davis and Foote, 1966); 2) derive a.classification variable for vul- 

nerable and non-vulnerable areas which was the presence or absence of 

pesticide residues in well water sampled in a section; and 3) use dis- 

criminant ana1ysi.s to a produce classification equation for vulnerability. 

A discriminant classification model was developed from data for 10 sections 

that were selected from 3 adjacent townships in an agricultural region of 

Fresno County. DBCP had been detected in 7 sections which were classified 

as vulnerable. The remaining 3 sections were identified as non-vulnerable. 
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The discriminallt model which contained 4 variables correctly classified the 

original 10 sections. However, when tested against an independent data set, 

sections with DBCP detections were correctly classified as vulnerable 

whereas non-vulnerable sections without DBCP detections were misclassified 

as vulnerable. Well sampling data available after that study indicated that 

nedrly all sections in the test townships now contain positive DBCP detec- 

tions. If the study had been conducted at a later date, the entire area 

would have been classified as vulnerable (Brown et. al., 1986) and a dis- 

criminant analysis would not have been possible. As illustrated by this 

example, the dynamic nature of well sampling evidence should be considered 

when ratios of the presence or absence of residues in well water are used as 

classification variables for vulnerability. 

In a similar discriminant procedure employed by Teso et. al. (1988), soil -- 

data were used to develop a discriminant function for the occurrence of 

either DBCP contaminated or uncontaminated sections in Fresno county. When 

tested against an independent data set describing DBCP contamination in 

Merced county, a 40% misclassification rate was measured. 

Since the attempts to devise classification systems that predict levels of 

vulnerability have not been entirely satisfactory, an approach was devised 

that profiled known vulnerable (KV) sections in California. Cluster 

analysis was first used to identify groups of KV sections with similar 

climate and soil conditions, Then, a classification algorithm was derived 

to determine whether soil conditions of new candidate sections of unknown 

vulnerability matched KV section profiles. This type of approach has been 

described as a Hydrogeologic Setting Comparison (HSC) where areas are judged 

6 



similar based on hydrogeologic character (Marshall, 1991). Previous HSC ef- 

forts utilized a restricted set of hydrogeologic variables that were 

interpreted with respect to the leaching pathway (Kisel et. a., - 1982; 

Fisher and Reid, 1986; Sacha et. al _ -., 1987). This current work expanded 

upon the HSC approach in six ways: 1) the number of climatic and soil vari- 

ables considered as identification variables was increased; 2) data were 

obtained that could be resolved at the section level, a 1 square-mile area; 

3) no assumptions were made about the causes of ground water contamination 

because, according to our experience, leaching is only one of several pos- 

sible causes of ground water contamination from nonpoint source pollution; 

4) clustering techniques were used to chose combinations of climate and soil 

variables that formed unique clusters of vulnerable sections; 5) classifica- 

tion algorithms were developed from the clustering results; and 6) the 

entire process could be revised to accommodate new information on vulnerable 

areas when a greater amount of sampling data become available. As much 

descriptor information as possible with respect to climatic, soil, and other 

variables was collected for 1 square-mile vulnerable sections in California. 

Multivariate clustering techniques were then used to determine whether the 

descriptor information could be used to identify unique groups of vulnerable 

sections. 

MATERIALS AND METHODS 

Determination of Vulnerable Sections 

A vulnerable sect ion was defi.ned as a 1 square-mile area of land where pes- 

t icide residues had been found in ground water due to agricultural use. By 

definition, all sections designated as Pesticide Management Zones (PM&) in 

California were included, but other sections not regulated as PMZs were also 
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included. Sections with bentazon and aldicarb detections were not desig- 

nated as PMZs because their regulations apply statewide. Also, sections 

with detections of active ingredients that are no longer registered in 

California were not designated as PMZs (Maes, et. aJ.., 1991). DBCP detec- 

tions, though numerous, were omitted from the study. Use of DBCP was banned 

in 1979. Since then, a large number of detections in well water have been 

reported, primarily from a sampling conducted by the California Department 

of Health Services (Brown et al., 1986). Detections could have resulted 

from movement of contaminated ground water between sections during the time 

span between cessation of use and sampling of well water. This problem may 

be amplified for DBCP because of a long half-life in ground water, estimated 

at greater than 100 years (Burlinson et. al., 1982), and because large quan- - 

tities were applied to soil. 

Data for pesticide detections in well water, excluding DBCP detections, were 

obtained from the Well Inventory Data Base maintained since 1985 by the 

Department of Pesticide Regulation (DPR) (Cardozo et a1.,1985). The 

Pesticide Prevention Contamination Act (Connelly, 1986) requires the DPR to 

determine whether or not reported detections are due to agricultural use. 

Therefore, detections determined to be due to agricultural use were used as 

indicators of areas that are vulnerable to contamination of ground water as 

a result of nonpoint agricultural use of pesticides. A total of 258 sec- 

tions were identified as KV sections. 

Data Sources 

Climatic data for temperature and precipitation were obtained from a weather 

station database maintained by the California Department of Water Resources 

(CDWR). Data were obtained from 127 weather stations. Mean values for 

8 



cumulative and monthly rainfall and for mean yearly and monthly temperature 

were derived from daily values averaged over 30 years at each station for 

1961-1990 (Table 1). The weather station closest to the center of each KV 

section was determined from latitude-longitude coordinates. 

Data for physical and chemical properties of soil were obtained at the level 

of soil mapping unit as delineated in soil survey maps for individual 

counties in California. The type of mapping unit used in this study was 

primarily surface texture phases of consociations of soil series (Soil 

Conservation Service, 1983). Two data sets were required. One data set 

identified the occurrence of soil mapping units in KV sections (personnel 

communication, Bob Teso, DPR, University of Riverside, Riverside, Ca). This 

data set was used to extract information from a second data, the Map Unit 

Interpretations Record (MUIR) data base provided by the Soil Conservation 

Service (SCS), USDA. The MUIR data base contains chemical, textural, and 

observational data by soil layer to the 5 foot depth for each soil mapping 

unit. Variables for soil texture in the MUIR database were presented in 

descriptive terms such as ‘sandy loam’. These descriptions were transformed 

to a numeric scale by assigning values for sand and clay determined from the 

centroid of corresponding textural classes in the Soil Triangle (Soil 

Conservation Service, 1975) (Table 2). Other categorical variables whose 

categories were ordinal were transformed to a numeric scale. High and low 

values were reported for numeric variables so mid-points were calculated. 

The amount of data present for each variable varied between soil layers. 

Data for certain variables were partitioned to represent surface and subsur- 

face conditions. The variable representative of the surface soil was 

derived by averaging data over the first soil layer for all soil mapping 

. 
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Table 1. Description of climatic and soil variables. 

Acronym Description 

Climate variablesa 
MIYR 
MXYR 
MNYR 
MlT-M12T 
PYR 
MlP-M12P 

Soil variablesb 
Textsand, Textclay 

Txtlsand, 

Subtxsnd, 

Laylclay, 

Laylno4c, 

LaylnolOc, 

Lay 1 n200C, 

Text ind 

Textlind, 

Laylshsw, Subshsw 
Lay lperm, Subperm 
Layldeph, Subdeph 

Lay 1 awcC , SubawcC 

Lay 1 omc 
Hyd 
PanC 
Dra inc 
WattabC 
FloodC 
“lo& 
DGW 

Txtlclay 

Subtxc ly 

Subclay 

Subno4’ 

SubnolOC 

Subn200c 

Subtxind 

Yearly minimum temperature 
Yearly maximum temperature 
Average Yearly temperature 
Mean monthly January-December temperature 
Mean annual precipitation 
Mean monthly January-December temperature 

Derived percent sand and clay for Overall USDA 
Textural class of the soil 
Derived percent sand and clay for USDA textural class 
for surface soil 
Derived percent sand and clay for USDA textural class 
for subsurface soil 
Measured % clay content of surface and subsurface 
soil reported in the MUIR data base. 
Percent by weight of soil material smaller than 76 mm 
in diameter that passes a no. 4 (5 mm) sieve 
Percent by weight of soil material smaller than 76 mm 
in diameter that passes a no. 10 (2 mm) sieve 
Percent by weight of soil material smaller than 76 mm 
in diameter that passes a no. 200 (75 urn) sieve 
Indicator for cobbles or stoniness in overall USDA 
textural class 
Cobble or stoniness indicator for surface and 
subsurface soil 
Shrink-swell of the surface and subsurface soil 
Permeability of the surface and subsurface soil 
Average depth of the derived surface and subsurface 
soil layers 
Average water holding capacity of surface and 
subsurface soil 
Average percentage of organic matter in the surface 
Hydrologic group 
Indicator for hard pan 
Drainage group 
Indicator for presence of a water table above 1.5 m 
Indicator for presence of annual flooding 
Surface slope of soil 
Depth from surface to ground water 

a Data obtained from California Department of Water Resources. 
b Data obtained from Soil Conservation Service. 
c Variables used in the classification algorithm. 
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Table 2. Scale transformations used for soil variables. 

Variable Initial Scale Transformed Scale 

Texture Sand 92% sand, 4% clay 
Loamy Sand 83% sand, 6% clay 
Sandy Loam 65% sand, 11% clay 
Loam 42% sand, 20% clay 
Silt Loam 20% sand, 15% clay 
Silt 8% sand, 6% clay 
Clay Loam 33% sand 34% clay 
Sandy Clay Loam 59% sand, 28% clay 
Silty Clay Loam 10% sand, 33% clay 
Sandy Clay 52% sand, 40% clay 
Silty Clay 7% sand, 46% clay 
Clay 20% sand, 60% clay 

Water Table No indication 0 
APPAR or PERCH 1 

Annual Flooding NONE 0 
RARE 1 
COMM or FREQ or OCCAS 2 

Drainage Class VP 
P 

St? 
MW 
W,MW 

W 
W,SE 
SE 

E 

0 
1 

; 
3.5 

z.5 
5 
6 

Hard Pan No indication 
THICK or THIN 

Shrink-Swell LOW 
MODERATE 
HIGH 

Hydrologic Group A 
B 
C 
D 

11 



units within a section. The variable representative of the subsurface soil 

was derived by averaging data for all soil layers below the first layer 

within a mapping unit and then averaging across all mapping units within a 

section. Missing data for Del Norte, Humbolt, Kern and Tulare counties were 

obtained manually from published soil surveys or through personal contact 

with local SCS personnel. Soil data could not be obtained for KV sections 

in Los Angeles, Orange, and San Bernardino counties. This reduced the num- 

ber of KV sections used in the statistical analysis from 258 to 180. 

One other variable, depth to ground water, was obtained from a 1985 CDWR 

report that contained information for specific wells with PLSS Township- 

Range identifications. Since only a portion of vulnerable sections con- 

tained data, a gridding procedure, available in the SAS@ statistical package 

was used to produce estimated values (SAS Inc, 1988). Del Norte, Humbolt, 

and Santa Clara Counties lacked enough information to conduct the gridding. 

Values for vulnerable sections in these areas were estimated from well log 

informat ion. Depth to ground water could not be determined for 9 other KV 

sections. In the discussion that follows, depth to ground water will be 

grouped with soil data. 

Each data set was initially processed using the ORACLE’ database management 

system on a SUN@ computer. The processed data were output to a single file 

in American Standard Code For Information Interchange (ASCII) format with 

each record representing a vulnerable section and containing all climate and 

soil data for that section. Twenty-eight climatic and thirty-three soil 

variables were identified (Table 1). The ASCII data file was analyzed with 

SAS@ software on a DOS based personal computer (SAS Institute, 1988). 
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Cluster Analysis 

Initially, the plan was to conduct a cluster analysis using all climate and 

soil variables. Climate variables, however, dominated results of the first 

analysis. This was caused by a difference in the variance structure between 

cl imate and soil variables for KV sections. Since weather stations were 

less numerous than KV sections, identical rainfall and temperature data were 

assigned to some KV sections. When means were obtained for each county, 

the variance for climate variables was zero. In order to retain climate in- 

formation for KV sections, a two-stage process was developed where in the 

first, cluster analysis was conducted on climate variables from 32 weather 

stations nearest KV vulnerable sections. In the second stage, cluster 

analysis was conducted on soil variables from KV sections within climate 

clusters. 

When the number of variables is large, one common clustering procedure is to 

first conduct a Principal Components Analysis (PCA) analysis on all vari- 

ables to determine if a subset of principal components (PCs) could be used 

to describe the raw data set. Clustering procedures are then conducted on 

the reduced number of principal components (Gnanadesikan and Kettenring, 

1989). This procedure has two disadvantages. First, description of the 

clusters could be unclear because assignment of meaning to the principal 

components could be difficult. Second, use of principal components could 

produce indistinct clustering results and obscure the actual number of 

clusters that exist in a data set (Fowlkes, et. al., 1988). The latter was 

observed with the soils data. 
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An alternative procedure was developed based on a forward selection tech- 

nique suggested by Fowlkes et. al. (1988). Prior to analysis, variables 

were standardized to mean 0 and standard deviation f 1 to remove effects of 

scale. In the first step, the single best clustering variable was iden- 

tified. In the second step, the single best variable was tested in 

combination with the rest of the variables and the best clustering pair of 

variables identified. Variables that were highly correlated with chosen 

variables were not included in subsequent steps because correlation between 

variables tends to inflate statistical measures used to test the performance 

of the cluster analysis (Aldenderfer and Blashfield, 1984). A correlation 

coefficient value < 0.75 was selected as the cut-off point for inclusion. 

This process was repeated until there was no clear clustering from the 

higher-order combinations of variables. 

Three statistical measures were used to determine the number of clusters; 

the Cubic Clustering Criterion (CCC), the Pseudo-F and Pseudo-t statistics 

(SAS Institute Inc., 1983; SAS Institute Inc., 1988). Three clustering 

methods were used: Ward, Average linkage, and Centroid. In the Ward method, 

distance between two clusters is computed as the Analysis of Variance sum of 

squares between the two clusters added up over all the variables. In the 

Average method, distance between two clusters is computed as the average 

distance between pairs of observations, one in each cluster. In the 

Centroid method, distance between two clusters is computed as the squared 

Euclidean distance between their centroids. The appropriate number of 

clusters at each step was determined as the best level of agreement between 

criteria and between methods. 
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Classification of Candidate Vulnerable Sections 

Vulnerability classification was based on measuring the similarity of soil 

data from candidate sections to profiles developed from the clustering 

analysis. Cl imate data would be used as a screen to determine the ap- 

propriate soil prof‘ile test. Soil profiles were developed by conducting a 

PCA analysis on the standardized soil variables within identified clusters, 

and then computing the mean and standard deviation of each principal com- 

ponent (PC) score. Corresponding PCs for each cluster would be calculated 

for soil data from candidate sections. Inclusion of a candidate section 

into one of the vulnerable clusters would occur only if every PC score from 

the candidate section fell within a specified distance of the corresponding 

cluster’s PC mean. The distance for each PC was determined as a constant 

‘K’ multiplied by the cluster standard deviation of the PC. The value of K 

was chosen by examining the proportion of correct and incorrect classifica- 

tions of KV sections as a function of K. 
I 

RESULTS 

Climate Variables 

Prior to clustering, correlation analysis was conducted on climatic vari- 

ables from 32 weather stations nearest KV sections. In general, temperature 

variables were uncorrelated with precipitation variables (Table 3). Minimum 

yearly temperature was highly correlated with September through May mean 

monthly temperatures and less correlated with June, July, and August values. 

In contrast, maximum yearly temperature was highly correlated with March 

through October mean monthly temperatures and less correlated with November 

through February values. Total annual precipitation was highly correlated 

with September through May monthly 
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Table 3. Correlation matrix for climate variables. Correlation coefficients of 0.75 or greater are underlined to illustrate trends in the data. Acronyms are defined in Table 2. 

PearsonCorrehthC&iiienWN=32 

TerrperatureVaMbles PrecipitationVariables 

MNR MXYR MNYR MlT M2T M3T M4T M5T M6T M7T M8T M9T MlOT MllT M12T PYR MlP M2P M3P MdP h45P M6P M7P M8P M9P MlOP MllP Ml2P 
MNR 1.00 0.68 0.90 0.88 0.95 0.96 0.89 0.76 0.64 0.56 0.64 0.78 0.92 0.94 0.85 -0.13 -0.03 -0.01 -0.03 -0.07 -0.35 -0.71 -0.74 -0.27 -0.22 -0.23 -0.13 -0.14 
MXYR 1.00 0.93 0.49 0.66 0.81 0.92 0.95 0.94 0.93 0.96 0.97 0.90 0.64 0.45 -0.60 -0.48 -0.50 -0.57 4.59 -0.72 -0.78 -0.71 -0.33 -0.62 -064 -0.63 -0.59 
MNYR 1.00 0.73 0.86 0.96 0.99 0.94 0.87 0.82 0.88 0.96 0.99 0.85 0.69 -0.42 -0.30 -0.30 -0.35 -0.38 -0.64 -0.81 -0.79 -0.33 -0.47 -0.49 -0.43 -0.41 
MIT 1.00 0.97 0.87 0.70 0.47 0.31 0.23 0.34 0.53 0.78 0.98 1.00 0.02 0.13 0.14 0.16 0.08 -0.24 -0.63 -0.60 -0.17 -0.05 -0.14 0.00 0.01 
M2T 1.00 0.96 0.85 0.67 0.52 0.43 0.53 0.70 0.90 1.00 0.95 -0.11 0.02 0.02 0.01 -0.05 -0.39 -0.75 -0.72 -0.28 -0.21 -0.25 -0.13 -0.11 
M3T 1.00 0.96 0.83 0.72 0.63 0.71 0.85 0.97 0.95 0.84 -0.27 -0.15 -0.14 -0.18 -0.21 0.52 -0.83 -0.79 -0.34 -0.37 -0.38 -0.29 -0.27 
M4T 1.00 0.95 0.88 0.82 0.87 0.95 0.98 0.83 0.66 -0.42 -0.30 -0.31 436 -0.37 -0.61 -0.84 -0.80 -0.36 -0.50 -0.49 -0.44 -0.41 
M5T 1.00 0.98 0.94 0.96 0.98 0.91 0.63 0.42 -0.52 -0.42 -0.42 -0.50 4.49 -0.64 -0.76 a.74 -0.35 -0.57 -0.54 453 -0.50 
M6T 1.00 0.99 0.98 0.97 0.83 0.49 0.26 -0.57 4.48 -0.49 -0.58 -0.56 -0.64 -0.67 -0.67 -0.32 -0.59 -0.55 a.57 -0.55 
M7T l.W 0.99 0.94 0.77 0.41 0.18 -0.63 -0.56 -0.57 -0.64 -0.63 -0.64 -0.61 -0.60 6.28 -0.60 -064 0.63 -0.62 
MBT 1.00 0.97 0.83 0.51 0.30 ~I.62 -0.53 -0.54 -0.61 0.61 -0.65 -0.67 -0.65 -0.29 -0.59 -0.61 -062 -0.61 

M9T 
MlOT 

s 
MllT 
Ml2T 
PYR 
MlP 
MP 
M3P 
M4P 
M5P 
M6P 
M7P 
M8P 
M9P 
MlOP 
MllP 
M12P 

1.00 0.93 0.68 0.48 
1.00 0.89 0.75 

l.w 0.97 
1.00 

-0.54 -0.44 -0.44 -0.51 0.53 -0.66 -0.76 -0.74 -0.33 -0.57 -0.58 455 -0.53 
-0.39 -0.26 -0.26 -0.31 -0.35 -060 -0.83 -0.80 -0.36 -0.46 -0.48 -0.41 -0.38 
-0.11 0.02 0.02 0.01 -0.06 -0.34 -0.73 -0.71 -0.26 -0.20 -0.26 -0.14 -0.12 
0.06 0.16 0.17 0.19 0.10 -0.21 4.59 -0.57 -0.15 -0.02 -0.11 0.03 0.04 
1.00 0.97 0.98 0.98 097 0.87 0.59 0.47 0.44 0.88 0.97 0.99 0.99 

1.00 0.99 
1.00 _ 

0.95 0.93 0.73 0.43 0.32 0.29 0.75 0.89 0.94 0.98 
0.97 0.96 0.77 0.45 0.33 0.30 0.80 0.91 0.96 0.98 
1.00 0.98 0.85 0.49 0.39 0.39 0.88 0.93 0.97 0.96 

i- 0.50 0.37 0.32 0.84 t 1.00 0.84 3.93 0.96 0.96 
1.00 0.83 0.71 0.64 0.96 0.93 0.93 0.83 

1.00 0.90 0.69 0.74 0.70 0.61 0.55 
1.00 0.76 0.69 0.60 0.49 0.45 

1.00 0.72 0.56 0.46 0.39 
1.00 0.92 0.90 0.84 

1.00 0.98 0.96 
1.00 0.98 

1.00 



average precipitation and less correlated with June, July, and August 

values. The forward clustering technique identified 5 distinct clusters 

formed from 3 variables. The clustering variables, given in order of selec- 

tion, were average January temperature, average March precipitation, and 

average July precipitation. Means for each variable in each cluster are 

given for the solution derived from the Ward method (Table 4). Clusters 3 

and 5 had high precipitation values: cluster 5 had the highest March 

precipitation and cluster 3 the highest July precipitation. Clusters 1, 2, 

and 4 had low precipitation vales, differing mainly in January temperatures: 

cluster 2 had the highest and cluster 4 the lowest January temperatures. 

The following geographic patterns were observed when weather station member- 

ship in each cluster was identified by county location of the weather 

station (Table 5). Cluster 1 was dominated by counties in the the Central 

Valley. Counties in cluster 2 were located in the central and south coasts 

and in inland portions of southern California. Counties in clusters 3 and 5 

were Humbolt and Del Norte, northern coastal counties. Siskiyou comprised 

cluster 4, reflecting the weather of a higher mountainous locale. 

Soil Variables 

Theoretically, clustering of soil variables would have occurred within each 

of the climate clusters to identify unique soil clusters within climate 

clusters. There were insufficient numbers of sections in most of the 

climate clusters to perform this analysis. However, the results of the 

climate clustering were highly indicative that KV sections in clusters 1, 2, 

and 4 could be grouped because they represented a low rainfall condition 

when compared to much higher rainfall values for those in clusters 3 and 5. 

Thus, the eleven sections in Del Norte and Humbolt counties were excluded 

from the soil clustering analysis. An additional 9 sections were excluded 
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Table 4. Means by cluster for weather variables produced by the 5 cluster 
solution for the Ward clustering method. 

Weather Nearest January Precipitation 
Cluster Stations KV Sect Temperature March July 

- ______ e-j _______ -- --°F--- -------inches------- 
1 20 153 45 1.8 0.03 

2 

3 2 2 47 4.5 0.71 

29 

8.6 

0.29 
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Table 5. Cluster association given by county location for 32 weather sta- 
tions nearest KV sections. 

Cluster County Location of Weather Station 

1 Contra Costa, Colusa, Fresno, Glenn, Kern, Merced, Sacramento, 
San Joaquin, Stanislaus, Tehama, Tulare, Yolo, Yuba 

2 Santa Cruz, Orange, Riverside, Santa Clara, San Diego 

3 Humbol t 

4 Siskiyou 

5 Del Norte 
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because of a lack of depth to ground water data. A total of 160 KV sections 

located in dry weather clusters were used in the soil clustering analysis. 

Correlation analysis was first conducted on the 33 soil variables (Table 6). 

One group consisted of 15 highly correlated variables which was comprised of 

10 variables that indicated texture in terms of sand and clay content of 

either the surface or subsurface soil, 4 variables that measured the per- 

meability and shrink-swell potential of the surface and subsurface soil, and 

a variable that indicated the hydrologic category of the soil. A second 

group of seven correlated variables consisted of indicators of cobbly or 

stony soil and measures of the percentage by weight of soil particles pass- 

ing through coarse sieve sizes Nos. 4 and 10. The 11 remaining variables 

were uncorrelated. 

The best clustering variable in the first step of the forward selection 

technique was a texture variable that measured the percent by weight of soil 

particles that pass through a No. 200 soil sieve. Soil texture is reflected 

by this variable in the following way: the lower the number of soil par- 

ticles passing through the No. 200 sieve, the greater the sand content of 

the soil and conversely, the greater the number, the greater the clay con- 

tent of the soil. Two clusters were indicated with this single variable. 

The best combinations of variables that indicated clustering in subsequent 

steps are given in Table 7. The final solution occurred with a combination 

of four variables: 1) the texture variable measuring soil particles passing 

a No. 200 soil sieve; 2) a variable that indicated presence of a water table 

above 5 feet some time during the year; 
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Table 6. Correlation matrix for soil variables. Correlation coefficients of 0.75 or greater are underlined to illustrate trends in the data. Acronyms are defined in Table 2. 

Pearson Correlation Coefficients/N=160 

Variables Correlated with Soil Texture 
TEXTSAND TEXTCLAY TXllSND TXllCLY IAYISHSW HYD LAYlCiAY LAYlPERM LAYIN SUBTXSND SUBTXCLY SUBSHSW SUBCIAY SUBPERM SUBN200 

TEXTSAND 

TEXTClAY 

TXTlSND 

TX-rlCLY 

LAYlSHSW 

HYD 

L4YlCLAY 

L4YlPERM 

LAYlN2W 

SUBTXSND 

SUBTXCLY 

SUBSHSW 

SUBCIAY 
w 
+ SUBPERM 

SUBN200 

TEXTIND 

TXTlIND 

LAYIN 

IAYlNOlO 

SUBTXIND 

SUBNO 

SUBNOlO 

IAYlDEPH 

PAN 

SUBDEPH 

DRAIN 

WAl-fAB 

FLOOD 

SLOPE 

~YloM 

IAYlAWC 

SUBAWC 

1.00 -0.87 0.98 -0.87 -0.82 -0.80 -0.89 0.89 -0.95 0.90 -0.85 -0.86 -0.87 0.79 -0.88 
1.00 -0.87 0.99 0.97 0.85 0.98 -0.78 0.91 -0.88 0.92 0.92 0.92 -0.73 0.89 

1.00 -0.88 -0.84 -0.80 -0.91 0.89 4.96 0.92 -0.86 -0.87 -0.89 0.79 -0.90 
1.00 0.97 0.84 0.99 -0.78 0.92 -0.88 0.92 0.92 0.92 -0.72 0.90 

1.00 0.76 0.97 -0.68 0.90 -0.86 0.89 0.91 0.89 -0.63 0.89 

1.00 0.85 -0.84 0.83 -0.84 0.90 0.88 0.89 -0.87 0.82 

1.00 -0.82 0.94 -0.92 0.94 0.94 0.95 -0.76 0.93 

1.00 -0.85 0.86 -0.82 -0.79 -0.84 0.89 -0.80 

1.00 -0.96 0.92 0.93 0.94 -0.79 0.96 

1.00 -0.96 4.95 4.97 0.86 -0.98 

1.00 0.99 0.99 -0.82 0.95 

1.00 0.99 -0.79 0.95 

1.00 4.84 0.97 

1.00 -0.81 

1.00 



Table 6. Continued. 

Pearson Correlation Coefficients/N=160 

TEXTSAND 

TEXTCLAY 

TXTlSND 

TxrlCLY 

L4YlSHSW 

HYD 

LAYlCLAY 

LAYlPERM 

LAYlN200 

SUBTXSND 

SUBTXCLY 

SUBSHSW 

SUBCLAY 

SUBPEAM 

E SUENPOO 

TEXTIND 

TXllIND 

LAYlN04 

LAYlNOlO 

SUBTXIND 

SUBNO 

SUBNOlO 

LAYlDEPH 

PAN 

SUBDEPH 

DRAIN 

WA-ITAB 

FLOOD 

SLOPE 

MYloM 

LAYlAWC 

SUBAWC 

DGW 

Variables Correlated with Coarse Soil Variables Uncorrelated Variables 
TEMIND TXTlIND LAYlN04 LAYlNOlO SUBTXIND SUBN04 SUBNOlO IAYlDEPH 

-0.45 

0.61 

-0.47 

0.62 

0.59 

0.58 

0.61 

-0.51 

0.55 

4.54 

0.59 

0.58 

0.59 

-0.51 

0.56 

0.01 

0.00 

0.13 

0.21 

0.03 

0.14 

0.22 

1.00 

PAN 

-0.05 

-0.03 

-0.01 

-0.05 

-0.15 

0.23 

xi.07 

-0.14 

-0.05 

0.08 

-0.04 

-0.05 

-0.05 

-0.19 

-0.13 

-0.10 

-0.09 

0.09 

0.01 

-0.02 

0.01 

-0.06 

-0.12 

1.00 

SUBDEPH 

-0.28 

0.35 

-0.29 

0.36 

0.36 

0.28 

0.37 

-0.29 

0.33 

-0.28 

0.31 

0.31 

0.29 

-0.26 

0.29 

-0.12 

-0.13 

0.10 

0.14 

0.02 

0.01 

0.04 

0.66 

-0.11 

1.00 

DRAIN 

0.64 

-0.62 

0.69 

-0.61 

-0.59 

-0.63 

-0.65 

0.61 

-0.67 

0.68 

-0.64 

-0.63 

-0.67 

0.62 

-0.67 

0.11 

0.12 

4.34 

-0.48 

0.15 

-0.33 

-0.41 

-0.29 

4.09 

-0.18 

1.00 

WATTAB 

a.57 

0.58 

-0.63 

0.58 

0.59 

0.44 

0.61 

-0.44 

0.62 

4.59 

0.52 

0.53 

0.55 

4.39 

0.60 

-0.04 

-0.05 

0.30 

0.42 

-0.06 

0.26 

0.35 

0.24 

-0.13 

0.17 

-0.85 

1.00 

FLOOD 

-0.11 

0.10 

-0.16 

0.07 

0.12 

-0.08 

0.12 

-0.06 

0.11 

-0.13 

0.05 

0.08 

0.08 

-0.01 

0.12 

-0.10 

-0.10 

0.08 

0.15 

414 

0.06 

0.09 

-0.13 

-0.15 

0.06 

-0.43 

0.57 

1.00 

SLOPE 

0.08 

0.00 

0.09 

0.00 

-0.04 

0.10 

-0.03 

0.00 

-0.11 

0.04 

-0.01 

-0.02 

-0.03 

-0.03 

-0.09 

0.07 

0.07 

-0.09 

a.18 

0.01 

0.00 

-0.02 

0.04 

0.10 

-0.24 

0.19 

-0.28 

-0.36 

1.00 

0.04 

0.01 

-0.05 

0.02 

4.05 

0.04 

0.03 

-0.14 

-002 

-0.02 

0.04 

-0.01 

0.03 

-0.04 

-0.07 

1.00 

-0.03 -0.26 -0.41 -0.02 4.22 -0.34 

-0.01 0.28 0.43 -0.07 0.29 0.41 

-0.03 -0.27 -0.42 -0.02 -0.24 4.36 

0.00 0.27 0.42 -0.06 0.29 0.42 

-0.07 0.34 0.49 -0.12 0.36 0.48 ; 

0.04 0.22 0.34 -0.04 0.23 0.33 

0.01 0.27 0.43 -0.05 0.28 0.41 

-013 -0.08 -0.20 -0.13 -0.04 -0.14 

-0.03 0.35 0.51 -0.05 0.31 0.43 

-0.01 -0.28 -0.44 0.05 -0.26 -0.39 

0.03 0.25 0.41 -0.07 0.27 0.40 

-0.02 0.30 0.46 -0.13 0.33 0.46 

0.02 0.27 0.43 -0.04 0.29 0.43 

-0.03 -0.15 -0.26 0.00 -0.15 -0.24 

-0.09 0.38 0.54 -0.15 0.38 0.51 

0.99 -0.86 -0.76 0.86 -0.80 -0.72 

1.00 -0.85 -0.76 0.85 -0.80 -0.72 

1.00 0.95 -0.78 0.91 0.87 

1.00 -0.73 0.89 0.91 

1.00 -0.89 4.84 

1.00 0.98 

1.00 

LAYloM 

4.69 

0.65 

-0.72 

0.64 

0.64 

0.49 

0.66 

-0.55 

0.70 

-0.64 

0.58 

0.60 

0.62 

-0.49 

0.65 

0.00 

0.00 

0.29 

0.42 

-0.09 

0.29 

0.38 

0.33 

0.00 

0.16 

-0.67 

0.65 

0.35 

-0.08 

1.00 

LAYlAWC 

4.69 

0.53 

-0.69 

0.53 

0.48 

0.57 

0.55 

-0.70 

0.68 

-0.65 

0.56 

0.56 

0.58 

-0.63 

0.61 

0.00 

-0.01 

0.25 

0.32 

0.02 

0.13 

0.18 

0.33 

0.17 

0.12 

-0.36 

0.29 

0.07 

-0.07 

0.58 

1.00 

SUBAWC 

-0.58 

0.55 

-0.61 

0.54 

0.55 

044 

0.58 

-0.60 

0.64 

-0.66 

0.55 

0.54 

0.58 

-0.62 

0.67 

-0.07 

-0.09 

0.23 

0.32 

-0.04 

0.19 

0.27 

0.38 

-0.07 

0.13 

-0.35 

0.33 

0.05 

0.05 

0.52 

0.66 

1.00 

DGW 

0.45 

-0.41 

0.44 

-0.41 

-0.39 

-0 47 

-0.38 

0.29 

-0 48 

0.43 

-0.43 

-0.43 

-0.42 

0.29 

-0.43 

-0.03 

-0.02 

-0.31 

-0.33 

-0.02 

-0.22 

-0.25 

-0.24 

-0.13 

-0.04 

0.33 

-0.34 

0.21 

-0.04 

-0.44 

-0.46 

-0.23 

1.00 



Table 7. Comparison between clustering methods and between criteria for the 
number of clusters found from stepwise addition of sol? variables. 
Acronyms are defined in Table 2. 

Variables and Number of Clusters According to these Criteria 
Clustering Method ccc Pseudo-F Pseudo-t 
Step 1: Layln200a 
Ward 
Average 
Centroid 

2 2 5 
2 2 2 
2 2 2 

Step 2: Layln200 and Wattab 
Ward 
Average 
Centroid 5 5 4 

Step 3: Layln200, Wattab, and Slope 
Ward 4 
Average 5 
Centroid 5 

4 4 
5 5 
5 5 

Step 4: Layln200, Wattab, Slope, and Laylno4 
Ward 6 5 
Average 7 7 
Centroid 7 7 

5 
7 
7 
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3) a variable that indicated the average slope of the section; and 4) a 

variable that measured the number of soil particles that pass through a No. 

4 soil sieve (the lower the number, the more volume of soil taken up by 

large soil constituents). Although the number of clusters differed between 

the Ward and the other 2 clustering methods at the four variable solution, 

the variables selected by the methods were identical. The Average and 

Centroid methods indicated a 7 cluster solution but 2 extra clusters, 

enclosed in the boxes in Figure 1, were produced from an early split of the 

same parent clusters identified in the Ward procedure. 

The 5 cluster solution from the Ward method was determined as the final 

solution. Each cluster from this solution had a unique combination of vari- 

ables as indicated by the means for variables in each cluster (Table 8). 

Soils in clusters 1 and 3 were clayey, as indicated by the higher % values 

for the Layln200 variable and had shallow slopes. Cluster 3 was split from 

cluster 1 because those sections also had a high incidence of soils with a 

water table above 5 feet. In contrast, soil in cluster 2 was sandy with 

shallow slope and with practically no presence of a shallow water table. 

Clusters 4 and 5 were intermediate in terms of surface soil texture but each 

was unique in that sections in cluster 4 had greater values for slope and 

those in cluster 5 had a greater incidence of large soil particles such as 

cobbles or stones as indicated by the lower $ values for the Laylno4 vari- 

able. 

Assessment of the clustering results was conducted by mapping the location 

of sections as identified by cluster association. There was good geographic 
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Figure 1. Heirarachical clustering results for the Ward and Average methods using 4 soil variables. Underlined 
numbers represent the final cluster solution for each method and numbers inside boxes for Average 
method are splits of clusters 11 and 15 in Ward method, 

NUMBER OF SECTIONS IN EACH CLUSTER SOLUTION 
2 3 4 5 6 7 --------------- --------------- ------------- 

WARD METHOD: 
- 40 

65 
25 

E 
AVERAGE METHOD : 

153 



Table 8. Means by cluster for soil variables produced by the 5 cluster solu- 
tion for the Ward clustering method. 

Cluster Lay ln200 
% --a m--w 

Wattaba Slope Lay 1 no4 
-------$----------- 

0.22 

2 69 40 0.04 1.6 96 

3 25 81 0.76 0.8 98 

4 11 57 0 12.7 96 

5 15 56 0.15 2.6 86 

a Scale from O-l with a 0 value representing no soils in a sect ion with a 
shallow water table above 5 feet and a value of 1 representing all soils 
in a section with a shallow water table. 
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separation between clusters. Sandy sections in cluster 2 were predominately 

located in the southern portion of the Central Valley and in the Southern 

Desert areas whereas clayey sections in clusters 1 and 3 were predominately 

located in the northern portion of the Central Valley (Figure 2). Within 

the clayey clusters, those with a greater incidence of shallow water table 

were located in a band sandwiched between groups of sections in cluster 1 

(Figure 3). Sandy sections of cluster 2 in the southern Central Valley were 

located along the valley floor with some sections in cluster 4 located along 

the foothills (Figure 4). Thus, the clustering appeared effective in 

providing a regional description of the location of vulnerable sections. If 

pathways of contamination are related to variables associated with each 

cluster, then it may be possible to devise and specify cluster-based manage- 

ment strategies. This approach could facilitate management decisions on a 

regional basis. 

Procedure for Identifying Vulnerable Sections 

A two-stage procedure for identifying candidate sections as vulnerable was 

developed. The first stage would be a climate screen to determine if the 

candidate section’s rainfall was either high or low. If the candidate sec- 

tion had high rainfall, then it would be subject to a soil profile test 

derived from soil data for KV sections in Humbolt and Del Norte counties. 

If the candidate section had low rainfall, then it would be subjected to 

further classification based on the soil profiles developed from KV sections 

in each of the 5 low-rainfall soil clusters. 
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Figure 2. Spatial location of sections in clusters 1 and 3 with predominant1 
contrasted to locatlons of sections in cluster 2 with 

clayey soil 
predominant y sandy soil, Y 

LOCATION OF SECTIONS 
WITH CLAYEY SOIL 

4 

ii e_-.... j LOCATION OF SECTIONS 
y-’ %$a\ upal\ 

nado Mono 

1 WITH SANDY SOIL 



Figure 3. Cluster membership for known vulnerable sections in the 
northern Central Valley. 

CLUSTER 
NUMBER DESCRIPTION 

30 q CLUSTER 1 
CLAY AND LOW 
WATER TABLE 

20 q CLUSTER 3 
CLAY AND HIGH 
WATER TABLE 

06 H CLUSTER 5 
COARSE SOIL 

x DENOTES CANDIDATE 
TEST SECTION 



Figure 4. Cluster membership for known vulnerable sections in the 
southern Central Ualley in Fresno and Tulare counties. 

------;.----.--~ 
i f’ r--------i I-.- mm; _-_._.__ ,-‘------r.-...-..?-----.~ 

. 

CLUSTER 
NUMBER DESCRIPTION 

01 n CLUSTER 1 
CLAYEY SOIL, 
LOW WATER TABLE 

38 q CLUSTER 2 
SANDY SOIL 

08 CLUSTER 4 
GREATER SLOPE 

x DENOTES CANDIDATE 
TEST SECTION 



Soil profiles were developed using 15 of the 33 soil variables. Redundant 

variables were excluded from the algorithm. For example, the number of soil 

particles passing sieve No. 200 was highly correlated with all derived tex- 

ture variables so the derived texture variables were omitted. 

Classif ication into surface and subsurface layers was retained because this 

could be an informative division in future investigations. The variables 

denoted with the superscript ‘c’ in Table 1 were used to develop the clas- 

sification algorithm. For a candidate section, data for the 15 soil 

variables first would be standardized to the mean and standard deviation of 

corresponding variables in each of the KV soil clusters. PC scores would be 

calculated for the candidate section based on the 15 standardized variables 

and the values compared to a specified range for each corresponding PC in a 

soil cluster, Inclusion into a cluster would occur only if all PC scores 

were within 3 standard deviations of the mean (zero). The multiplier 3 was 

determined from a plot of the number of KV sections correctly classified as 

a function of the value of K. When the value was 3, 95% of the KV sections 

were correctly classified into their respective soil clusters (Figure 5). 

Although a larger value of K would achieve 100% correct classifications, it 

could also result in the classification of more dissimilar sections as vul- 

nerable. A candidate section would be classified as vulnerable if it could 

be considered a member of one of the soil clusters, otherwise it would be 

considered as not classifiable. There is no implication that sections not 

classified are invulnerable. 
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Figure 5. Proportion of sections classified into the correct cluster as a function of K, a 
multiplier of the standard deviation of PC scores. 
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An example of the classification procedure is given for eight candidate sec- 

tions, 4 in Glenn county and 4 in Fresno county. The sections were chosen 

from areas near 3 of the low-rainfall KV clusters (Figures 3 and 4). Since 

these sections are near low rainfall weather stations, their soil data were 

compared to the 5 clusters identified from the cluster analysis of the low 

rainfall KV sections. The occurrence of soil mapping units in each of the 

candidate sections was manually determined from SCS soil maps in published 

soil surveys for Glenn and Fresno counties. Data for the 15 soil variables 

for each of the soil mapping units were extracted from the MUIR database and 

average values calculated for each section. The average sectional values 

were standardized to the corresponding mean and standard deviation of each 

of the 5 soil clusters. Next, PC scores for the standardized values were 

calculated by multiplying the standardized values with the PC coefficients 

for each of the 5 clusters. The membership test was then conducted by 

determining if each sectional PC score was within 3 standard deviations of 

the mean of that cluster. Results in Table 9 are expressed in terms of the 

number of tests for that cluster where the PC score for the standardized 

section was outside the range. A value of zero indicates cluster member- 

ship. All 4 sections in Fresno county were classified as belonging to 

Cluster 2, the predominately sandy cluster. Two of the sections in Glenn 

county were geographically near and subsequently, classified into Cluster 3, 

clayey sections with high incidence of a water table above 5 feet. Two 

other sect ion in Glenn county were geographically near Cluster 1, clayey 

sections with low incidence of a shallow water table, but only one of those 

sections was identified as a member of that cluster. 
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Table 9. Test of the classification of candidate sections for membership in 
one of the low rainfall soil clusters. 

Section Number of PC Tests Out of The Range for Cluster: 
Location 1 2 3 4 5 

Fresno County 

15S2lEOl 0 12 2 6 
15S21E06 0 12 
15S2lE07 6 0 10 6" l 
15S2lE12 5 0 10 3 6 

Glenn County 

19N03W34 3 6 0 9 
19NO3W35 1 

z 
0 

; 
ii 

19NO4Wl3 2 7 5 
19N04W14 0 3 - 11 6 4 
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These results have two implications with respect to implementation of 

management strategies. First, the choice of a section as a basic geographic 

unit appears to give good results: averaging all mapping units within a sec- 

tion produced logical patterns with respect to geographic association of 

soil mapping units. Second, regional management strategies may be possible 

based on the clusters. For example, division of sections based on soil tex- 

ture suggested that different management strategies may be required for 

clayey vs sandy soils: special properties of clay soil such as the ap- 

pearance of cracks or a shallow water table could require a different set of 

management conditions than those generated for sandy soils. However, more 

information is needed on the processes important in pesticide movement in 

each cluster in order to provide a link between management practices and 

cluster identification. 

In summary, the present study has endeavored to create profiles of groups of 

known contaminated sections in California with respect to a series of 

climatic and physical soil properties. The following question has been 

answered : what are some of the vulnerable sections in California like? The 

profile analysis of this study differed from a typical discriminant analysis 

in two ways. First, profiles were devised only for vulnerable sections: no 

non-vulnerable sections were studied or defined. We, therefore, have no way 

of evaluating the usefulness of the climatic and soil variables as dis- 

criminators for vulnerability. It is possible that variables were used 

which are not effective in discrimination. Second, profiles were created 

for five clusters comprising a total of only I60 sections. There may be 

other vulnerable cluster profiles with characteristics not included in our 

description of vulnerability. Therefore, new candidate sections which are 
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not classified as similar to one of the known vulnerability clusters are not 

necessarily invulnerable. They retain a status of unknown vulnerability 

which could be changed when the clustering and classification procedures are 

updated to reflect new positive well sampling data. 

SUMMARY 

1. Clustering methods were successful in grouping vulnerable sections based 

on climate and soil variables. However, due to differences in the 

variance structure two separate procedures were used. 

2. Clustering of data from weather stations resulted in 5 distinct groups 

that were related to geographic location of the weather station. With 

respect to pesticide movement to ground water, two of the clusters had 

high rainfall and contained 11 of the 180 vulnerable sections, 7 in Del 

Norte and 4 in Humbolt counties. The remaining KV sections were in the 

other 3 clusters that had low rainfall. 

3. Clustering analyses were conducted on soil data from 160 KV sections that 

were members of the low rainfall clusters. Using a forward selection 

technique, four soil variables were identified that clustered 160 vul- 

nerable sections into 5 groups. The variables were: 1) soil texture as 

measured by the percentage by weight of soil material smaller than 76 mm 

that passes a No. 200 (75 urn) soil sieve; 2) indication of the presence 

of a water table above 5 feet during the year; 3) the average slope of 

mapping units in a section; and 4) an indication of the presence of 

such as cobbles or stones as measured by the per- 

il material smal ler than 76 mm that passes a No. 4 

coarse soil particles 

centage by weight of so 

(5 mm) soil sieve. 
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4. Due to differences noted in the variance of the climate and soils data 

sets, a two-stage approach was developed to identify candidate sections 

as vulnerable. A candidate section would be screened to determine 

whether if it had low or high rainfall, If the candidate section had low 

rainfall, then it would be subjected to a classification algorithm 

developed from the results of the clustering of soil variables for 160 

vulnerable sections in low-rainfall areas. If the section passed the 

soil algorithm then it would be identified as a vulnerable section. If 

the section had high rainfall, then it would be considered vulnerable if 

data from soil variables passed an algorithm developed from properties of 

soils that occur in vulnerable sections in Del Norte and Humbolt 

counties. 
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