

Date: March 20, 2020

#### DEPARTMENT OF PESTICIDE REGULATION

### SURFACE WATER AMBIENT MONITORING REPORT

| . Study highlights               |                                                   |                       |                    |                                       |  |  |  |  |
|----------------------------------|---------------------------------------------------|-----------------------|--------------------|---------------------------------------|--|--|--|--|
| • DPR Study Number               | 310                                               |                       |                    |                                       |  |  |  |  |
| SURF Study Number                | r                                                 |                       |                    |                                       |  |  |  |  |
| <ul> <li>Study Title</li> </ul>  | Northern California Agricultural Monitoring, 2019 |                       |                    |                                       |  |  |  |  |
| <ul> <li>Project Lead</li> </ul> | Scott Wagner                                      |                       |                    |                                       |  |  |  |  |
| • Email                          | Scott.Wagner@cdpr.ca.gov                          |                       |                    |                                       |  |  |  |  |
| <ul> <li>Protocol url</li> </ul> |                                                   |                       |                    |                                       |  |  |  |  |
| https://www.cdpr.ca.             | gov/docs/emon/pubs/protoc                         | col/study310_wag      | gner_2019.pdf      |                                       |  |  |  |  |
| Protocol available online        | e for five years, thereafter, please              | e request a copy fron | the SWPP list of a | rchived files                         |  |  |  |  |
| Study Area                       |                                                   |                       |                    |                                       |  |  |  |  |
| County: Colusa,                  | Yolo, Madera, Merced, Star                        | nislaus               |                    |                                       |  |  |  |  |
| Waterbody/Waters                 | shed: Lower Logan Creek                           | , Willow Creek,       | Clarks Ditch-Co    | lusa Basin Drain,                     |  |  |  |  |
| <del>-</del>                     | d Creek, South Slough-Dea                         |                       |                    |                                       |  |  |  |  |
| Creek                            |                                                   |                       |                    |                                       |  |  |  |  |
| • Land use type                  | 🛚 Ag 🔲 Urban                                      | ☐ Forested            | ☐ Mixed            | ☐ Other                               |  |  |  |  |
| • Water body type                |                                                   |                       |                    |                                       |  |  |  |  |
| $\boxtimes$ Ag                   | ☐ River ☐ Pond                                    | □Lake                 |                    |                                       |  |  |  |  |
| □ Drainage Ditch                 | ☐ Storm Drain Outfall                             | Other                 |                    |                                       |  |  |  |  |
| Objectives                       |                                                   |                       |                    |                                       |  |  |  |  |
| -                                | monitoring candidates based                       |                       | 1                  | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| -                                | e and concentrations of price                     | -                     | _                  |                                       |  |  |  |  |
| the selected monitoring          | g regions; 3. Analyze chem                        | istry data to evalı   | ate potential im   | pacts on aquatic life                 |  |  |  |  |
| Sampling period Ma               | ay 2019 – September 2019                          |                       |                    |                                       |  |  |  |  |
| Pesticides monitored             | l                                                 |                       |                    |                                       |  |  |  |  |
| Abamectin Acetamin               | rid, Atrazine, Azoxystrobin                       | Benfluralin Bif       | enthrin Bromac     | il Carbaryl                           |  |  |  |  |

Abamectin, Acetamiprid, Atrazine, Azoxystrobin, Benfluralin, Bifenthrin, Bromacil, Carbaryl, Chlorantraniliprole, Chlorpyrifos, Clothianidin, Cyfluthrin, Cypermethrin, Cyprodinil, Diazinon, Diflubenzuron, Dimethoate, Diuron, Esfenvalerate/fenvalerate, Ethalfluralin, Ethoprop, Etofenprox, Hexazinone, Imidacloprid, Indoxacarb, Isoxaben, Kresoxim-methyl, Lambda-Cyhalothrin, Malathion, Methidathion, Methomyl, Methoxyfenozide, Metribuzin, Norflurazon, Oryzalin, Oxyfluorfen, Pendimethalin, Permethrin, Prodiamine, Propanil, Propargite, Propiconazole, Pyraclostrobin,

Pyriproxyfen, Quinoxyfen, Simazine, S-metolachlor, Tebufenozide, Thiamethoxam, Thiobencarb, Trifloxystrobin, Trifluralin

#### Major findings

Water samples collected from Colusa, Yolo, Madera, Merced, and Stanislaus Counties were monitored for 61 active ingredients (A.I.s), at seven agricultural field sites in May, June, July, August and September of 2019. These sites were distributed across two large regions: the Sacramento Valley and the San Joaquin Valley. A.I.s included herbicides, fungicides and insecticides of high use for these particular areas. Eleven active ingredients had detection frequencies of greater than 10%: azoxystrobin (59%), bifenthrin (23%), chlorantraniliprole (32%), lambda-cyhalothrin (10%), methoxyfenozide (71%), oxyfluorfen (20%), pendimethalin (13%), propanil (29%), propiconazole (35%), S-metolachlor/metolachlor (32%), and thiobencarb (59%). Bifenthrin, imidacloprid, lambda-cyhalothrin, oxyfluorfen and thiobencarb exceeded their lowest U.S. Environmental Protection Agency (U.S. EPA) aquatic benchmark values. A greater number of pesticides was detected at the 3 sites in Sacramento Valley than at the 4 sites in San Joaquin Valley. Concentrations of the rice herbicides propanil and thiobencarb were higher during the May sampling events in Sacramento Valley while concentrations of the fungicide azoxystrobin were higher in July and September.

Sediment samples collected at five sites in Colusa, Stanislaus, and Merced Counties were monitored for 6 pyrethroid insecticides in July of 2019. Bifenthrin was detected at two sites, no other pyrethroids were detected in sediment at the other sites. One of the detections resulted in a sediment toxicity unit of greater than 1; at this particular site, bifenthrin was also detected in the water sample.

Water column toxicity tests were conducted using the test organisms *Hyalella azteca* (96-hour test) and *Chironomus dilutus* (10-day test). Samples from seven sites in June and six sites in September were collected for toxicity testing (one site in September did not have water). In June, significant toxicity to *C. dilutus* was observed at one site in Colusa County; water from another site in Stanislaus County was significantly toxic to *H. azteca*. In September, the same site in Stanislaus County showed toxicity to *H. azteca*; no significant toxicity was observed in *C. dilutus*. Bifenthrin was detected in the samples that showed toxicity to *H. azteca*.

Recommendations for pesticides that need a CDFA analytical method (from SWMP):
 Dinotefuran

#### 2. Pesticide detection frequency

Data available in SURF (https://www.cdpr.ca.gov/docs/emon/surfwtr/surfdata.htm) upon yearly update. Contact Project Lead for data not yet uploaded. In SURF, use "SURF Study Number" (Section 1) for obtaining the data.

Table 1. Pesticides detected in water

| Pesticide           | Sample<br>Number | Detection<br>Number | Detection<br>frequency<br>(%) | Reporting<br>Limit (µg/L) | Lowest USEPA<br>benchmark<br>(BM) (µg/L)* | BM<br>Type** | Number of BM exceed-ances | BM<br>exceedance<br>frequency (%) |
|---------------------|------------------|---------------------|-------------------------------|---------------------------|-------------------------------------------|--------------|---------------------------|-----------------------------------|
| Abamectin           | 34               | 0                   | 0                             | 0.02                      | 0.17                                      | IA           | 0                         | 0                                 |
| Acetamiprid         | 15               | 0                   | 0                             | 0.02                      | 2.1                                       | IC           | 0                         | 0                                 |
| Atrazine            | 34               | 2                   | 6                             | 0.02                      | <1                                        | NVA          | 0                         | 0                                 |
| Azoxystrobin        | 34               | 20                  | 59                            | 0.02                      | 44                                        | IC           | 0                         | 0                                 |
| Benfluralin         | 15               | 0                   | 0                             | 0.05                      | 1.9                                       | FC           | 0                         | 0                                 |
| Bensulide           | 7                | 0                   | 0                             | 0.02                      | 11                                        | IC           | 0                         | 0                                 |
| Bifenthrin          | 30               | 7                   | 23                            | 0.001                     | 0.0013                                    | IC           | 5                         | 17                                |
| Bromacil            | 7                | 0                   | 0                             | 0.02                      | 6.8                                       | NVA          | 0                         | 0                                 |
| Carbaryl            | 33               | 0                   | 0                             | 0.02                      | 0.5                                       | IC           | 0                         | 0                                 |
| Chlorantraniliprole | 34               | 11                  | 32                            | 0.02                      | 4.4                                       | IC           | 0                         | 0                                 |
| Chlorpyrifos        | 34               | 0                   | 0                             | 0.02                      | 0.04                                      | IC           | 0                         | 0                                 |
| Clothianidin***     | 15               | 1                   | 7                             | 0.02                      | 0.05                                      | IC           | NA***                     | NA                                |
| Cyfluthrin          | 30               | 0                   | 0                             | 0.002                     | 0.0074                                    | IC           | 0                         | 0                                 |
| Cypermethrin        | 30               | 0                   | 0                             | 0.005                     | 0.069                                     | IC           | 0                         | 0                                 |
| Cyprodinil          | 20               | 0                   | 0                             | 0.02                      | 8                                         | IC           | 0                         | 0                                 |
| Diazinon            | 34               | 0                   | 0                             | 0.02                      | 0.105                                     | ΙA           | 0                         | 0                                 |
| Diflubenzuron       | 34               | 0                   | 0                             | 0.02                      | 0.00025                                   | IC           | 0                         | 0                                 |
| Dimethoate          | 34               | 2                   | 6                             | 0.02                      | 0.5                                       | IC           | 0                         | 0                                 |
| Diuron              | 34               | 2                   | 6                             | 0.02                      | 2.4                                       | NVA          | 0                         | 0                                 |
| Esfenvalerate       | 30               | 0                   | 0                             | 0.005                     | 0.017                                     | IC           | 0                         | 0                                 |
| Ethalfluralin       | 15               | 0                   | 0                             | 0.05                      | 0.4                                       | FC           | 0                         | 0                                 |
| Ethoprop            | 7                | 0                   | 0                             | 0.02                      | 0.8                                       | IC           | 0                         | 0                                 |
| Etofenprox          | 7                | 0                   | 0                             | 0.02                      | 0.17                                      | IC           | 0                         | 0                                 |
| Hexazinone          | 7                | 0                   | 0                             | 0.02                      | 7                                         | NVA          | 0                         | 0                                 |
| Imidacloprid        | 34               | 3                   | 9                             | 0.01                      | 0.01                                      | IC           | 3                         | 9                                 |
| Indoxacarb          | 7                | 0                   | 0                             | 0.02                      | 75                                        | IC           | 0                         | 0                                 |
| Isoxaben            | 7                | 0                   | 0                             | 0.02                      | 10                                        | VA           | 0                         | 0                                 |
| Kresoxim-methyl     | 7                | 0                   | 0                             | 0.02                      | 30.3                                      | NVA          | 0                         | 0                                 |
| Lambda-cyhalothrin  | 30               | 3                   | 10                            | 0.002                     | 0.002                                     | IC           | 3                         | 10                                |
| Malathion           | 34               | 0                   | 0                             | 0.02                      | 0.049                                     | IA           | 0                         | 0                                 |
| Methidathion        | 7                | 0                   | 0                             | 0.02                      | 0.66                                      | IC           | 0                         | 0                                 |
| Methomyl            | 7                | 0                   | 0                             | 0.02                      | 0.7                                       | IC           | 0                         | 0                                 |
| Methoxyfenozide     | 34               | 24                  | 71                            | 0.02                      | 3.1                                       | IC           | 0                         | 0                                 |
| Metribuzin          | 7                | 0                   | 0                             | 0.02                      | 8.1                                       | NVA          | 0                         | 0                                 |
| Norflurazon         | 7                | 0                   | 0                             | 0.02                      | 9.7                                       | NVA          | 0                         | 0                                 |
| Oryzalin            | 34               | 0                   | 0                             | 0.05                      | 13                                        | VA           | 0                         | 0                                 |
| Oxyfluorfen         | 15               | 3                   | 20                            | 0.05                      | 0.29                                      | NA           | 1                         | 7                                 |
| Pendimethalin       | 15               | 2                   | 13                            | 0.05                      | 5.2                                       | NVA          | 0                         | 0                                 |
| Permethrin          | 30               | 0                   | 0                             | 0.002                     | 0.0014                                    | IC           | 0                         | 0                                 |
| Prodiamine          | 15               | 0                   | 0                             | 0.05                      | 1.5                                       | IC           | 0                         | 0                                 |

| Pesticide                 | Sample<br>Number | Detection<br>Number | Detection<br>frequency<br>(%) | Reporting<br>Limit (µg/L) | Lowest<br>USEPA<br>benchmark<br>(BM) (µg/L)* | BM<br>Type** | Number<br>of BM<br>exceed-<br>ances | BM<br>exceedance<br>frequency<br>(%) |
|---------------------------|------------------|---------------------|-------------------------------|---------------------------|----------------------------------------------|--------------|-------------------------------------|--------------------------------------|
| Propanil                  | 34               | 10                  | 29                            | 0.02                      | 9.1                                          | FC           | 0                                   | 0                                    |
| Propargite                | 34               | 0                   | 0                             | 0.02                      | 7                                            | IA           | 0                                   | 0                                    |
| Propiconazole             | 20               | 7                   | 35                            | 0.02                      | 21                                           | NVA          | 0                                   | 0                                    |
| Pyraclostrobin            | 20               | 1                   | 5                             | 0.02                      | 1.5                                          | NVA          | 0                                   | 0                                    |
| Pyriproxyfen              | 34               | 0                   | 0                             | 0.02                      | 0.015                                        | IC           | 0                                   | 0                                    |
| Quinoxyfen                | 7                | 0                   | 0                             | 0.02                      | 13                                           | FC           | 0                                   | 0                                    |
| Simazine                  | 34               | 1                   | 3                             | 0.02                      | 2.24                                         | NVA          | 0                                   | 0                                    |
| S-Metolachlor/Metolachlor | 34               | 11                  | 32                            | 0.02                      | 1                                            | IC           | 0                                   | 0                                    |
| Tebufenozide              | 7                | 0                   | 0                             | 0.02                      | 29                                           | IC           | 0                                   | 0                                    |
| Thiamethoxam              | 14               | 0                   | 0                             | 0.02                      | 0.74                                         | IC           | 0                                   | 0                                    |
| Thiobencarb               | 34               | 20                  | 59                            | 0.02                      | 1                                            | IC           | 6                                   | 18                                   |
| Trifloxystrobin           | 34               | 0                   | 0                             | 0.02                      | 2.76                                         | IC           | 0                                   | 0                                    |

<sup>\*</sup>Benchmarks are used as a screening tool for risk analysis

Table 2. Pesticides detected in sediment

| Pesticide                 | Sample<br>Number | Detection<br>Number | Detection<br>frequency<br>(%) | LC <sub>50</sub> (µg/g<br>OC)* | Detection frequency (%) of sediments ≥ 1 TU* | MedianTUs* |
|---------------------------|------------------|---------------------|-------------------------------|--------------------------------|----------------------------------------------|------------|
| Bifenthrin                | 5                | 2                   | 40                            | 0.52                           | 20                                           | 0.64       |
| Cyfluthrin                | 5                | 0                   | 0                             | 1.08                           | 0                                            | 0          |
| Cypermethrin              | 5                | 0                   | 0                             | 0.38                           | 0                                            | 0          |
| Esfenvalerate/fenvalerate | 5                | 0                   | 0                             | 1.54                           | 0                                            | 0          |
| Lambda-cyhalothrin        | 5                | 0                   | 0                             | 0.45                           | 0                                            | 0          |
| Permethrin                | 5                | 0                   | 0                             | 10.83                          | 0                                            | 0          |

<sup>\*</sup>Sediment Toxicity Units (TUs) are calculated using the formula, use TU = C/1000/LC50 / % TOC, where C = concentration (µg/kg dry weight), LC50 (µg/kg) is derived from accepted published values (from Amweg et al. 2005, Toxicol. Chem. 24:966-972; Amweg and D.P. Weston 2007, Environ. Toxicol. Chem. 26:2389-2396; Maund et al. 2002, Environ. Toxicol. Chem., 21:9-15), % TOC is stated in the sediment results Appendix III. One TU is equal to the LC50. If using other LC50 values, list value and reference

### 3. Tracking Benchmark Exceedances (BME) or Sediment Toxicity (TU)

For further data analysis: pesticides that have  $\geq 10\%$  aquatic benchmark exceedances [BME] or  $\geq 1$  sediment toxicity units [TU] for 3 consecutive years are recommended for further detailed data analysis (Ambient Urban Monitoring Methodology SOP METH014).

<sup>\*\*</sup>FA, fish acute; FC, fish chronic; IA, invertebrate acute; IC, invertebrate chronic; NVA, non-vascular acute; VA, vascular acute

<sup>\*\*\*</sup>Clothianidin detections are qualitative only

Table 3. BME (for pesticides with  $\geq$  10% BME) or median sediment TUs (for pesticides with  $\geq$  1 sediment TU) (all sites) for the past 3 years

| Pesticide          | Water | Sedi-<br>ment | Currentyear (i) | i - 1 | i - 2 | Last written evaluation (reference) | Further data analysis (Y/N) |
|--------------------|-------|---------------|-----------------|-------|-------|-------------------------------------|-----------------------------|
| Bifenthrin         | Х     |               | 17              | 4.1   | 10    |                                     | N                           |
| Lambda-cyhalothrin | Х     |               | 10              | 12.5  | 0     |                                     | N                           |
| Thiobencarb        | Х     |               | 18              | 25    | 0     |                                     | N                           |
| Bifenthrin         |       | Х             | 20              | 33    | NA    |                                     | N                           |

# 4. <u>QC</u>

Table 4. Laboratory Quality Control (QC) summary

| QC Type                  | Water Samples<br>Total Number | Water Samples<br>Number of QC<br>Out of Control | Sediment<br>Samples<br>Total Number | Sediment Samples<br>Number of QC Out<br>of Control |
|--------------------------|-------------------------------|-------------------------------------------------|-------------------------------------|----------------------------------------------------|
| Lab Blanks               | 84                            | 5                                               | 5                                   | 0                                                  |
| Matrix Spikes/Duplicates | 84                            | 0                                               | 5                                   | 0                                                  |
| Blind Spikes             | 0                             | 0                                               | 0                                   | 0                                                  |
| Surrogate Spikes         | 5                             | 0                                               | 0                                   | 0                                                  |

Comments on out of control QC and interpretation of data: Carbaryl was detected in some of the lab blanks; the lab was aware of the problem and resolved the issue as the sampling season progressed. A carbaryl result for one ambient sample was included in this report due to the issue (Table 1)

## 5. Data: water quality, aquatic toxicity, and analytical chemistry results

Water quality data, aquatic toxicity data, and monitoring results are available upon request. Please contact the SURF database administrator (https://www.cdpr.ca.gov/docs/emon/surfwtr/surfdata.htm) or Project Lead for the data.