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EXECUTIVE SUMMARY 

Background 

Detections of pesticide residues in groundwater in the late 1970s resulted in enactment of the 
Pesticide Contamination Prevention Act (PCPA) in 1985 by the California legislature. As indicated by its 
title, the goal of the legislation is to protect California’s groundwater resources from further 
contamination. When first adopted, the PCPA mandated that the California Department of Pesticide 
Regulation (DPR) establish the Groundwater Protection List (GWPL) — a list of pesticides that have the 
potential to pollute groundwater — and provided very specific requirements for how the chemicals 
would be identified. The PCPA required DPR to develop threshold values, termed specific numerical 
values (SNV), which were developed for several physical-chemical properties to identify the potential 
for a chemical to move to groundwater. Threshold values were calculated using a statistical 
comparison of the distributions of data for each chemical property between pesticide chemicals 
recognized as known leachers and non-leachers (Johnson, 1991). All chemicals used to develop the 
SNVs had agricultural applications that could result in movement to groundwater. Chemicals identified 
as leachers were those that have been detected in well water samples, and chemicals identified as 
non-leachers were those that were sampled for but not detected. The SNVs developed by Johnson in 
1991 were used to determine which pesticides are placed on the GWPL. DPR’s Groundwater Protection 
Program (GWPP) uses the GWPL, codified in Title 3 of the California Code of Regulations section 
6800(b), to prioritize pesticide chemicals for subsequent well sampling studies. Since the Johnson 
(1991) report, additional well monitoring studies have determined the presence or absence of 
pesticide chemicals in California’s groundwater, leading to a revision of chemicals identified by DPR as 
known leachers and non-leachers. The revised categorization of leacher and non-leacher chemicals 
provided a basis for this proposed revision of the SNV procedure. Furthermore, revisions to the PCPA in 
2015 allowed greater flexibility for refining the SNV process used to identify potential leachers and 
required the identification of pesticide degradation products with the potential to contaminate 
groundwater. These changes to the PCPA allowed for the investigation of additional chemical 
properties not specified in the original PCPA and of an alternative and more discriminating statistical 
approach to identifying potential leachers.  

Methodology 

The SNV threshold values developed by Johnson (1991) were generated using the lists of leacher and 
non-leacher pesticide chemicals that were established from well monitoring studies conducted 
throughout the contiguous United States (U.S.). For this present study, analyses were limited to well 
monitoring data from studies conducted within California by DPR and other agencies because of 
greater reliability of the data generated from these studies. Specifically, there was: 1) greater access to 
analytical quality control data, 2) knowledge of the condition of the wells sampled, and 3) the ability to 
demonstrate a connection between analytical results obtained from a well sample and pesticide 
applications made near the wellhead. 
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The SNV values developed by Johnson (1991) relied on data generated for five empirically-measured 
chemical properties that reflect mobility and persistence in soil. Data for these empirical chemical 
properties were derived from laboratory or field studies. As required by the PCPA, when pesticide 
registrants submit products with new active ingredients for California registration, they submit these 
data to DPR. In addition to several of the original properties used in the SNV process, some additional 
empirically-derived chemical-specific properties were investigated in this revision of the process. 
Various quantum-derived, chemical-specific properties based on the molecular structure and activity of 
the chemical were also investigated. The quantum- or molecular-chemical properties are calculated by 
modeling software and result in less variability than the empirical properties that can be influenced by 
inconsistencies in environmental conditions, study management practices, and measurement errors. 

The SNV procedure is statistically univariate in nature because it individually compares five chemical-
specific properties to each of five corresponding threshold values. Exceedance of a threshold value 
related to at least one mobility-related, chemical-specific property and one persistence-related, 
chemical-specific property identifies a chemical as having potential to leach to groundwater. As an 
alternative methodology to the SNV approach, a multivariate approach was investigated to 
discriminate between the known leacher and non-leacher chemicals. This multivariate procedure 
generates a single threshold value utilizing a function containing multiple chemical-specific properties 
where exceedance of this threshold value identifies the chemical as having potential to leach to 
groundwater.  

Results 

Revision of Leacher and Non-Leacher Chemicals 

The revised categorization of leacher and non-leacher chemicals resulted from additional well sampling 
data generated in California since the report by Johnson (1991) and from improvements in chemical 
analytical methodology. The following changes were made to the known leacher and non-leacher lists 
of chemicals used by Johnson (1991): 

• Eleven chemicals were removed from consideration due to lack of available physicochemical 
properties data: 

o Dieldrin, DDT, DDD, DDE, ametryne, chlordane, heptachlor, lindane, naled, silvex, 
toxaphene 

• Fourteen chemicals were identified as leachers based on detections in subsequent well 
sampling studies: 

o Parent chemicals — norflurazon, hexazinone, imidacloprid, tebuthiuron 

o Degradation products — aldicarb sulfone, aldicarb sulfoxide, alachlor ethanesulfonic acid 
(ESA), metolachlor ESA, metolachlor oxanilic acid (OXA), deethylatrazine, 
deethylsimazine, diaminochlorotriazine, desmethylnorflurazon, 2,3,5,6-
tetrachloroterephthalic acid 

• Six chemicals were reclassified from leacher to non-leacher status: 
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o Analytical chemistry updates separating parent from its degradate — chlorthal-dimethyl 
(DCPA) 

o Subsequent well sampling conducted with no detection — alachlor, carbofuran, 
cyanazine, fonofos, oxamyl 

• Six chemicals were identified as non-leachers based on lack of detections in subsequent well 
sampling studies despite ongoing agricultural use in the sampling areas: 

o Iprodione, methomyl, napropamide, oryzalin, oxyfluorfen, thiobencarb 

From the well monitoring studies conducted in California, 25 chemicals have been detected and 
subsequently identified as leachers. These include many previously identified by Johnson (1991), but 
also include the four parent chemicals and ten degradation products discussed above. However, only 
18 of these chemicals were eventually used in this study as known leachers because the remaining 
seven chemicals had incomplete datasets of physicochemical properties (Table 1).  

Thirty-two chemicals have been identified as non-leachers. These include many previously identified by 
Johnson (1991) along with the six reclassified and six newly identified parent chemicals indicated 
above. However, in this study only 24 of these chemicals were used as non-leachers because the 
remaining chemicals had incomplete datasets of physicochemical properties (Table 2).  

Revised Statistical Method to Determine a Chemical’s Leaching Potential 

Investigations into the quantum- and empirically-derived chemical properties resulted in 29 chemical-
specific properties for potential inclusion in the multivariate analysis. All 29 chemical properties were 
subjected to statistical testing prior to inclusion in the multivariate analysis. The statistical testing 
ensured that the property values were normally distributed, that actual differences between known 
leacher and non-leacher chemicals existed for each property, and that the chemical properties were 
not highly correlated. The latter would identify potentially redundant information as reflected in a 
correlation analysis. Eleven of the 29 chemical properties were eventually identified for inclusion in the 
initial multivariate analysis using a canonical discriminant analysis (CDA) procedure. In this procedure, 
the 11 chemical properties were analyzed together as a group to determine if a significant difference 
existed between the distributions of the CDA scores for the known leacher and non-leacher chemicals. 
This initial CDA analysis indicated a highly significant difference between the scores for the leacher and 
non-leacher groups. A threshold value to identify a leacher was then generated from the distribution of 
scores for the leacher chemicals. Since the distribution of the leacher group was shifted to the right of 
the distribution of the non-leacher group due to its higher scores, the threshold value was determined 
as the lower prediction limit at the 95 percent confidence level of the leacher distribution. The 11-
parameter multivariate model predicted the correct leaching status of all members in the leacher 
group of chemicals, and all but two members of the non-leacher group of chemicals. The error rate of 
misclassification was 2 out of 42 chemicals, or approximately 5%. 

Subsequent analyses determined whether a CDA model containing fewer chemical properties could 
also effectively discriminate between the known leacher and non-leacher groups of chemicals. 
Sequential reduction of the least influential chemical properties identified a model utilizing five 
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chemical properties that had the same misclassification rate (5%) as the full model with 11 chemical 
properties. Cross-validation of the CDA models using formal assessments, termed leave-one-out and 
leave-pair-out analyses, indicated that the five-parameter model was highly stable compared to 
models containing fewer than five parameters. The five chemical properties in this model are the 
empirically-derived properties of soil aerobic half-life, carbon-normalized soil adsorption coefficient 
(Koc), and quantum-calculated properties of dipole moment, energy of highest occupied molecular 
orbital (EHOMO), and maximum electrostatic potential (MaxElPot). Consistent with findings from other 
studies investigating the fate of chemicals in the environment, a measure of a chemical’s 
environmental persistence is reflected by soil aerobic half-life and EHOMO. Potential for soil mobility is 
reflected by Koc, dipole moment, and MaxElPot. Inherent variability in chemical-specific property values 
derived from empirical experimentation, such as those used exclusively in the SNV process, do not 
exist with the quantum or molecular properties. The dipole moment, EHOMO, and MaxElPot are 
chemical properties whose values are calculated from the molecular structural information of a 
chemical and therefore provide added stability to the CDA model. 

Comparison to the SNV Process 

The SNV procedure utilizes compounding conditions from two categories of chemical properties to 
predict a chemical’s leaching status. One category relates to soil mobility and includes water solubility 
and Koc. The other relates to environmental persistence and includes aerobic and anaerobic soil 
metabolism half-lives and hydrolysis half-life. A pesticide is classified as having leaching potential if one 
threshold value from a chemical property in both categories is exceeded. 

Johnson (1991) reported that with the SNV procedure, 14 of 27 non-leacher pesticides were 
misclassified as predicted leachers. Conversely, 4 of 23 leacher pesticides were misclassified as 
predicted non-leachers. Together, this resulted in 18 of 50 chemicals misclassified by the SNV 
procedure, giving an overall misclassification rate of 36%.  

As indicated above, the new multivariate model with five chemical properties misclassified two non-
leacher chemicals out of the combined total of 42 known leacher and non-leacher chemicals, giving an 
overall misclassification rate of approximately 5%. The procedure developed in this present study 
significantly improves the identification of a chemical’s potential to leach to groundwater. 

Process to Identify the Potential Leaching Status of a Chemical Using the 
Multivariate Procedure 

1. In the presence of multiple values, utilize the median value for the soil aerobic half-life and Koc of 
the chemical. 

2. Calculate the dipole moment, EHOMO, and MaxElPot values of the chemical from its molecular 
structure in the equilibrium state. The Spartan ’20 computer program was used in this study to 
derive these values.  

3. Derive the Multivariate Leaching Value (MLV) for the chemical as: 
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MLV = 1.9349 (Log10 soil aerobic half-life) – 1.2197 (Log10 Koc) + 0.1562 (dipole moment) – 0.9140 
(EHOMO) + 2.2728 (Log10 MaxElPot) 

4. Compare the MLV score for the chemical to the Multivariate Leaching Threshold (MLT) value of 
14.4706. The MLT value is derived from the distribution of MLV scores for the group of known 
leacher chemicals. If the MLV ≥ MLT, then the chemical is identified as a member of the leacher 
group of chemicals with potential to move into California’s groundwater. 
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INTRODUCTION 

Background for the Development of a Procedure to Identify Potential 
Groundwater Contaminants 

In the late 1970’s, chemical ingredients in pesticide products used for agriculture were detected in 
California groundwater resulting in the enactment of the Pesticide Contamination Prevention Act 
(PCPA) of 1985. As implied by its name, the goal of the legislation is to protect California’s groundwater 
resources from further contamination by agriculturally-applied pesticides. One key directive in the 
legislation mandates that the California Department of Pesticide Regulation (DPR) identify pesticide 
active ingredients registered in California that have a potential to move to groundwater. In the initial 
legislation, the PCPA identified specific environmental fate properties that must be used to identify a 
chemical’s potential to leach to groundwater. Based also on their agricultural use patterns, specific 
pesticide active ingredients were then identified as potential leachers and added to the Groundwater 
Protection List (GWPL) [Title 3 of the California Code of Regulations (3CCR) section 6800(b)], which 
references the California Food and Agricultural Code (FAC) sections 13144, 13145, and 13149. As 
required by the PCPA, DPR’s Groundwater Protection Program (GWPP) conducts well water sampling 
studies for chemicals on the GWPL to determine their presence in California’s groundwater. The design 
of well sampling studies for chemicals on the GWPL includes additional data describing patterns of 
pesticide use, agricultural management practices, and information on potential geographical 
vulnerability for movement of chemicals to groundwater. DaSilva (2018) provides an example of a well 
sampling study design to monitor for the potential presence of a pesticide in groundwater.  

The GWPL is periodically updated in regulation to include chemicals in newly registered pesticide 
products. The procedure to determine if a chemical qualifies for listing on the GWPL was developed 
from physical and chemical properties identified as important determinants for the potential of a 
chemical to leach to groundwater. The approach originally outlined in the PCPA was developed from 
observations in an earlier United States Environmental Protection Agency (U.S. EPA) report by Cohen 
et al. (1984). That report listed water solubility, soil adsorption coefficient normalized for organic 
carbon content of soil (Koc), Henry’s law constant (Kh), speciation, hydrolysis half-life, soil photolysis 
half-life, and soil metabolism half-life as important chemical characteristics. Ranges were provided for 
values of the chemical properties thought to identify a pesticide active ingredient as a potential 
leacher. These values were estimates and were not derived through an analytical procedure. A more 
rigorous approach was developed by DPR combining the chemical properties into two groups, where 
one group reflected a chemical’s potential for mobility through soil and a second group reflected 
persistence in the environment. A threshold value was developed for each chemical property using a 
statistical procedure. Exceedance of at least one threshold value from each of the soil mobility and 
environmental persistence groups identified the chemical as a potential leacher. The active ingredient 
underwent further investigation with respect to its agricultural use patterns to qualify for placement 
on the 3CCR section 6800(b) list. 

Wilkerson and Kim (1986) originally developed the statistical approach to determine the threshold 
values for each chemical property. They identified two lists of chemicals. One was denoted as leachers 
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and contained pesticide chemicals detected in well water samples. The second was denoted as non-
leachers and contained pesticide chemicals with use patterns that facilitated opportunity for 
movement to groundwater but where residues had not been detected in well water samples. 
Chemicals on the lists reflected detections or non-detections in groundwater resulting from general 
agricultural use; chemical detections originating from point sources were not included on the leacher 
list because point source contamination does not necessarily indicate a chemical’s persistence or 
mobility in the soil environment. Chemical-specific values for the pesticide properties specified in the 
PCPA were then collected for each chemical. University of California staff with expertise in 
environmental toxicology independently reviewed the well monitoring and chemical properties data to 
authenticate each chemical’s leacher or non-leacher status and to verify the data used in the statistical 
analysis. Upon normalization of the distribution of values to base 10 logarithm, a hypothesis test 
evaluated potential statistical differences between means for the leachers and non-leachers for each 
chemical property. For those properties indicating statistical difference between the two groups, a 
threshold value was calculated as the antilogarithm of the logged value at either the 10 or 90 percent 
confidence interval of the distribution of leacher chemicals. Selection of the 10 or 90 percent 
confidence interval depended on the location of the distribution of the chemical property for the 
leacher group relative to the non-leacher group (Wilkerson and Kim, 1986; Johnson, 1988, 1989, and 
1991). The threshold values were designated Specific Numeric Values (SNVs) and enacted into 
regulation (3CCR section 6804) in 1989. Several amendments to the regulations followed with the final 
amendment occurring in 1991. A pesticide active ingredient is currently designated a potential leacher 
if it exceeds at least one soil mobility SNV threshold value and at least one environmental persistence 
SNV threshold value. Johnson (1991) calculated the misclassification rate of the SNV process based on 
reclassification of the chemicals on both lists. The SNV process misclassified four of 23 leachers as non-
leachers and 14 of 27 non-leachers as leachers. In total, 18 of 50 pesticides were misclassified giving an 
overall misclassification rate of 36%. 

Revision of the Process to Identify Chemicals with High Leaching Potential 

Since development of the SNVs in 1991, many well water sampling studies have been conducted in 
California and other states to determine the presence of chemicals in groundwater. The PCPA was 
updated in 2015 and allows greater flexibility in the process used to identify chemicals as potential 
leachers and added the requirement that degradation products also be evaluated for their potential to 
contaminate groundwater. This current revision of the process includes: 

• Updating the lists of chemicals determined as known leachers or non-leachers. 

• Expanding the list of chemical properties that could reflect chemical leaching potential. 

• Updating the statistical methodology used to predict and classify chemicals as potential 
leachers or non-leachers. 

Updating Chemicals Listed as Leachers or Non-Leachers 

Chemical properties data used to develop the SNV procedure were based on pesticides from 
groundwater monitoring studies conducted prior to the Wilkerson and Kim (1986) report. Since then, 
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subsequent monitoring studies have detected additional pesticide residues in California well water. 
Many of these studies were conducted by GWPP to determine potential groundwater contamination 
by chemicals on the 3 CCR section 6800(b) list. As required by the PCPA, GWPP developed and 
maintains a database for all groundwater sampling of pesticides conducted in California by state or 
other government agencies. When pesticide residue detections are reported in well water by another 
agency, GWPP investigates the veracity of the detections and the extent of the groundwater 
contamination. If submitted laboratory quality assurance and quality control (QA/QC) data indicate 
that the well water sample is the source of the detection, the well is typically resampled and nearby 
wells may be sampled to determine the areal extent of groundwater contamination. 

Recent improvement in chemical analytical methodology has revealed earlier misidentification of 
chemicals on the lists of known leachers and non-leachers used by Wilkerson and Kim (1986) and 
Johnson (1988, 1989, and 1991). For example, chlorthal-dimethyl (DCPA) was initially identified as a 
leacher by Wilkerson and Kim (1986). However, improvement in the analytical methodology to identify 
parent and degradation products later determined that the original detections of DCPA were 2,3,5,6-
tetracloroterephthalic acid (TPA), which is a degradate of DCPA (Monohan et al., 1995). The propensity 
for TPA, rather than its parent, to move to groundwater was supported by results of a national well 
sampling program conducted between 1988 and 1990 by U.S. EPA (U.S. EPA, 1992; U.S. EPA, 2008). In 
that study, TPA was the most widely-detected chemical in groundwater; no residues of the parent 
DCPA were detected. This result was further supported by domestic well water sampling conducted in 
California by GWPP where TPA residue was detected and DCPA was not (Ando, 1992; Ruud, 2021). 
Consequently, for this current study DCPA was reclassified to known non-leacher status while TPA was 
classified as a known leacher. 

Expanding the List of Chemical Properties 

As initially prescribed in the PCPA, the SNV threshold values were generated through analysis of 
physical and chemical properties data required to be submitted to U.S. EPA and DPR for pesticide 
product registration. Revision of the PCPA in 2015 allowed for inclusion of additional chemical 
properties and alternative statistical methodology to develop threshold indicator(s) as long as the 
revised process was subject to independent peer review [FAC section 13145(e)]. Previous 
investigations have identified alternative chemical properties that effectively relate to a chemical’s 
leaching potential. Randic (1975) and Worrall (2001) used measures of molecular connectivity to 
identify pesticide chemicals with greater leaching potential. Following those investigations, Worrall and 
Thomsen (2004) used a combination of quantum and topological variables to further identify chemicals 
with greater leaching potential. For this present revision, the evaluation included investigating 
chemical-specific quantum properties. Topological and connectivity properties were not included 
because the multivariate analysis utilized in this study is a parametric procedure that requires data for 
each property to approximate a normal distribution. The dataset for many topological and connectivity 
properties are not normally distributed. Base 10 logarithm transformations of these data were either 
unsuccessful or often not possible because of the large proportion of zero values in the datasets. 
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Updating the Statistical Methodology 

The SNV procedure utilizes a univariate approach where, for each new chemical submitted for 
registration in California, the median value of each chemical property is compared to its respective SNV 
threshold value. For this revision of the SNV procedure, the use of a multivariate statistical approach to 
distinguish between leaching and non-leaching chemicals is proposed. In a multivariate approach, 
discrimination between groups is based on a single value generated from two or more chemical 
property values. For example, Gustafson (1989) generated a single score for each pesticide, denoted as 
the Groundwater Ubiquity Score (GUS), from its Koc and field- or laboratory-derived soil half-life values. 
The function that generated the scores also identified threshold GUS values that discriminated 
between the same known leacher and non-leacher pesticides previously identified by Wilkerson and 
Kim (1986). The GUS index is an example of a single pesticide-specific score calculated from two 
chemical properties where the score is compared against threshold scores identifying a chemical as a 
potential leacher, transitional leacher, or non-leacher. Similarly in this present revision, a multivariate 
statistical approach produced an equation to derive a single score generated from multiple chemical 
properties for each chemical tested. The chemical’s score is then compared against a threshold score 
identifying the chemical as a potential leacher or non-leacher. The updated groupings of known 
leacher and non-leacher chemicals provide the basis for the development of an effective multivariate 
model of chemical properties.  

METHODOLOGY 

Well Monitoring Data Identifying Chemicals as Leachers or Non-Leachers 

Two important aspects of a well water sampling study that are evaluated to determine if reported 
detections result from nonpoint-source agricultural applications are:  

1) Wells are sampled in areas where pesticide use has occurred, providing a physical connection 
between agricultural applications and detection in a well sample. The connection between 
agricultural pesticide use and subsequent detection of residues in groundwater is evident by 
the extent of reported detections of pesticides in DPR’s Well Inventory Database (DPR, 2020) 
that have exclusive agricultural uses; and 
  

2) QA/QC data generated during the study validate the results, assuring that the pesticide 
detection is associated with the well water sample. The QA/QC data should rule out laboratory 
or field contamination as a source of the reported detection. For example, detection limits for 
chemical analytical methodology are relatively low with values frequently reported in the parts-
per-trillion range (ng/L). At these levels, residues on glassware or residual chemicals in 
chromatographic columns used for sample analysis could lead to detections of low 
concentrations where the source is from laboratory equipment and not from an actual 
environmental sample, such as well water. 
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Initially, data from well sampling conducted throughout the U.S. were to be utilized for determining 
pesticide chemical potential to move to groundwater due to agricultural use. However, verification of 
detections reported in studies conducted outside of California was problematic because: 

• Inspection of laboratory QA/QC data indicated potential issues with determining well water 
samples as sources of detections. 

• Most of the wells were not resampled to verify detections. 

• Previous agricultural pesticide use around the well was not verified. 

• The type of well, the well’s condition, or the structural integrity of the well was not reported.  

Lack of data on the type and condition of a well is problematic. For example, detections in extremely 
shallow monitoring wells may not translate to detections in domestic well water, which is typically 
deeper. In addition, detections could be due to point source contamination resulting from damaged or 
poor well construction rather than from nonpoint-source agricultural applications.  

Based on these factors, this current study uses California well monitoring data included in GWPP’s Well 
Inventory Database (DPR, 2020). This database contains DPR’s well monitoring data, and monitoring 
conducted by other agencies such as the California State Water Resources Control Board (SWRCB), and 
the U.S. Geological Survey (USGS). The USGS initiated nationwide well water sampling for pesticide 
residues and other constituents in groundwater through the National Water-Quality Assessment 
Program (NAWQA). In California, the program was expanded to address a mandate by the State 
legislature for SWRCB to provide an assessment of the condition of all groundwater basins in California. 
This program was designated as the Groundwater Ambient Monitoring Assessment (GAMA) Program. 
DPR created the Well Inventory Database to comply with the PCPA, which requires all state agencies to 
submit well water sampling data to DPR when measuring for the presence of pesticide chemical 
residues. 

Studies conducted by DPR provide a high level of confidence in a chemical identified as detected or 
not-detected in groundwater because: 

• Well sampling is conducted in areas of known pesticide use — DPR maintains a database of 
spatial applications of agricultural pesticides and well sampling is targeted to areas where 
pesticides are known to be used. 

• Single-family domestic wells are targeted for sampling — many single-family domestic wells are 
located in rural areas surrounded by potential nonpoint-source, agriculturally-applied pesticides 
and have water drawn from shallow, more vulnerable aquifers.  

• Well sampling is conducted in areas of known vulnerability — wells are targeted in areas that 
have been identified as vulnerable to pesticide leaching. 

• Extensive QA/QC samples are taken: 

o Reported detections in primary samples are verified by analysis of backup samples.  
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o Field-collected blank samples are analyzed to determine if detections in well water 
samples are the result of potential contamination at the sampling site due to handling 
and sample collection procedures or during transportation of the sample. 

o Laboratory QA/QC samples are analyzed to provide information on the potential for 
laboratory contamination.  

Owing to the large number of chemical analyses conducted for the GAMA Program, design elements 
for well sampling and study QA/QC included: 

• Multi-chemical screen analysis — samples taken were subject to analytical screens that provide 
data on a large list of inorganic and organic chemicals thereby requiring a more robust and 
intensive QA/QC methodology. 

• Streamlined QA/QC data — wells with detections were not resampled, nor were backup 
samples available for analyses due to the large number of chemical analyses conducted. Field-
blank water samples accounted for only 10% of the total well water samples collected from 
random wells. 

Fram and Stork (2019) recently revised previously reported detections in well water samples collected 
under the GAMA Program for the years 2004 through 2018. For their report, the initial well sampling 
dataset was subject to an updated five-step QA/QC procedure. The revised procedure included 
information generated over time from laboratory blank samples and was shown to affect the outcome 
of well water sampling data generated by the NAWQA Program (Medalie et al., 2019). Application of 
the revised QA/QC methodology for the GAMA Program resulted in changing the designation of some 
detections to non-detected status. The modified data from that report were used in this current study 
to determine the detected or non-detected status of pesticide chemicals. However, some of the 
chemicals in the revised report had sparse detections and were subjected to further investigation 
(Troiano and Clayton, 2022).  

Pesticide Physical, Chemical, and Quantum-Calculated Properties 
Investigated 

U.S. EPA requires studies on various physical and chemical properties of pesticide active ingredients 
prior to federal registration. The PCPA mandates that product registrants submit these studies to DPR 
as a requirement for active ingredients in pesticide products going through registration in California. 
Data for some of these physical and chemical properties including aerobic and anaerobic soil 
metabolism half-life, hydrolysis half-life, water solubility, and Koc are used in the SNV procedure 
developed in 1991. Other environmental fate data of active ingredients required for registration of 
pesticide products by U.S. EPA and DPR that were included in this revision, but not utilized in the SNV 
process, were terrestrial field dissipation (TFD) half-life, octanol-water partition coefficient (Kow), vapor 
pressure (VP), and Henry’s law constant (Kh). The study data required by U.S. EPA and DPR for 
registration purposes are typically derived experimentally and thereby designated as empirical data in 
this report. Data submitted to satisfy registration requirements of a pesticide product in California 
were the primary source for the empirical chemical properties data. Where data were unavailable from 
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registration submissions, such as for many of the degradation products and some active ingredients of 
pesticides registered prior to the PCPA and exempted from data submission, reliance on other data 
sources included U.S. EPA Re-registration Eligibility Documents (RED), open scientific literature, and the 
University of Hertfordshire’s Pesticides Properties Database (PPDB). PPDB is a European-based 
database used to support risk assessment and risk management largely for registration purposes 
(https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm). Documentation for the data submitted to PPDB 
has been generated in individual reports by European member states.  

Some empirical properties were not included in this investigation because of insufficient data or 
because the test protocol utilized in the study indicated that the property would not discriminate 
between the known leacher and non-leacher chemicals. For example, measures for anaerobic soil 
metabolism half-life and aqueous and soil photolysis half-lives were not included because these data 
were not available for a substantial portion of the degradation products. Hydrolysis half-life was not 
included in this investigation because the U.S. EPA test protocol only requires a 30-day study duration 
period. Many pesticides do not hydrolyze sufficiently within 30 days to calculate a meaningful 
hydrolysis dissipation rate. Consequently, hydrolysis is often noted as stable with no numeric value 
indicated and thus has limited discriminatory power. 

The chemical properties investigated were further broadened to include molecular properties of 
chemicals derived from computational quantum modeling methods. These computations require 
three-dimensional (3-D) conformation as input and describe many aspects of molecular structure and 
activity. For example, surface area and volume descriptors are obtained directly from the molecular 
wave function as calculated from the graphical surface of the electron density map. To derive the 
quantum properties, the molecular structure of the chemical was imported into the Spartan ’20 
computer program (available at: http://wavefun.com) in spatial data file notation to simulate its 3-D 
structure in the equilibrium state. Chemical property calculations based on molecular structure and 
activity have been previously investigated for use as predictors of environmental fate (Worrall, 2001; 
Worrall and Thomsen, 2004).  

Seven empirical and 22 molecular chemical properties were considered for the analysis, as summarized 
below: 

• Empirical properties: water solubility, Koc, laboratory soil aerobic half-life, TFD half-life, Kow, Kh,
and VP.

• Molecular properties: PolarArea75, AccPolarArea75, PolarArea100, AccPolarArea100,
PolarArea125, AccPolarArea125, PSA, Dipole, MaxElPot, MinElPot, Polarizability, Molecular
weight, SurfArea, SurfVolume, AccSurfArea, EHOMO, Hardness, ELUMO, Electronegativity, EAU,
MinLocIonPot, and Conformers.

Appendix I contains a description of each chemical property referenced in this report and its associated 
abbreviation. Appendix II contains the value used for each chemical property with a reference for the 
source of the value. 

http://wavefun.com
https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm
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Statistical Methodology 

The statistical approach used in this study consisted of five sequential steps which are expanded on in 
the following sections:  

1. Screening each chemical property for distribution normality, testing statistical differences for 
each chemical property between the known leacher and non-leacher groups of chemicals, and 
correlation testing between chemical properties to reduce redundancy in the dataset prior to 
multivariate analysis testing. 

2. Canonical Discriminant Analysis (CDA) to identify a statistically significant and efficient 
multivariate model from the chemical properties that discriminates between the known leacher 
and non-leacher chemicals.  

3. Calculation of a CDA score for each chemical, denoted as its Multivariate Leaching Value (MLV), 
which is calculated using chemical property values specific to the chemical. 

4. Use of the statistical prediction interval to calculate a universal MLV threshold score, denoted 
as the Multivariate Leaching Threshold (MLT), where a chemical’s MLV is compared to the MLT 
to determine its predicted leaching or non-leaching classification. 

5. Cross-validation of candidate multivariate models using the ‘leave-one-out’ and ‘leave-pair-out’ 
analyses. 

1. Screening Chemical Properties to Include in the Multivariate Statistical Analysis 

There were 29 chemical properties to potentially include in the CDA analysis. This number of predictor 
variables was greater than the number of chemicals, or group members classified as leachers, which 
violated the prerequisites of a discriminant function analysis. Therefore, a reduction of chemical 
properties was required to produce a valid CDA analysis. Reduction in the number of properties was 
based on sequential evaluation of each chemical property, first testing for distribution normality of the 
data, then measuring potential to discriminate between the leacher and non-leacher classified 
chemicals, and lastly determining redundancy in information provided between the properties. The 
CDA procedure in the Statistical Analysis System (SAS, 2008) used in this revision was based on 
parametric statistics and required tested variables to approximate a normal distribution (PROC 
CANDISC, SAS, 2008). Each empirical and quantum or molecular chemical property was subject to a 
test of distribution normality with separate tests conducted within the leacher and non-leacher groups 
(PROC CAPABILITY, SAS, 2008). When the main test statistic, Shapiro-Wilk, was marginally significant 
for just one of the groups (leachers or non-leachers), inspection of quantile-quantile (Q-Q) plots 
indicated the extent of deviation from normality. A chemical property was not rejected if the Q-Q plot 
of the dataset illustrated only marginal deviation from normality. Where necessary, data transformed 
to base 10 logarithms (Log10) were also subject to normality tests. A chemical property was excluded in 
subsequent analyses if the raw or transformed data did not approximate a normal distribution.  

Chemical properties that approximated a normal distribution were subject to Student’s t-tests (PROC 
T-TEST, SAS, 2008) for hypothesis testing of the means between the leacher- and non-leacher-classified 
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chemicals. Typically, a t-test P-value of ≤ 0.05 indicates statistical significance. However, for this 
analysis a relaxed P-value of ≤ 0.15 was chosen for statistical significance when testing if a chemical 
property was retained for further statistical analysis. This relaxed significance level ensured inclusion of 
chemical properties that, despite having marginal insignificance in the t-test, may provide power of 
discrimination when used in the multivariate analysis. 

Lastly, chemical property values that were normally distributed and with a t-test P-value ≤ 0.15 
between the leacher and non-leacher groups were entered into a correlation analysis to identify 
potential redundancy between the properties. The correlation analysis was conducted on the 
combined data from the leacher and non-leacher groups. Based on a Pearson’s correlation coefficient 
of ≥ |0.7|, several groups of highly correlated chemical properties were observed. A representative 
chemical property from within each correlated group was chosen based on the strength of its t-test as 
indicated by the P-value significance, and how representative it was of the group of correlated 
variables. The chemical property with the greatest number of Pearson’s correlation coefficients ≥ |0.7| 
was considered most representative of the group — the remaining chemical properties in the 
correlated group were excluded from further analyses. Chemical properties with coefficients < 
|0.7|within the whole correlation matrix were considered sufficiently uncorrelated and were retained 
in the study. 

2. Canonical Discriminant Analysis 

All chemical properties retained from the final correlation analysis were included in the initial CDA 
multivariate procedure. Canonical discriminant analysis is a multivariate technique that is used to 
construct a discrimination space for maximum separation of class variables. Accordingly, relationships 
can be established between a categorical variable and a group of independent variables (Zhao and 
Maclean, 2000). The CDA procedure (PROC CANDISC, SAS, 2008) by default standardizes the data for 
each variable to zero mean and unit variance, then implements a multivariate analysis of variance 
which provides an overall test for significant difference between the categorical leacher and non-
leacher groups of chemicals. Resulting standardized coefficients are back transformed to their original 
variable space to be applied as coefficients to the raw chemical properties data. Upon verification of 
significant statistical differences, subsequent CDA analyses were conducted to determine if fewer 
chemical properties were as effective in discriminating between the leacher and non-leacher groups. 
Each CDA analysis provided a set of coefficients denoted as the Total-Sample Standardized Canonical 
Coefficients (standardized coefficients) that indicated the relative influence of each chemical property 
to the discrimination process: the magnitude of the coefficients represents the relative importance of 
the variable in discriminating the leachability category, and the sign determines the direction of the 
correlation. The chemical property with the lowest standardized coefficient in terms of absolute value 
was excluded from the next iteration of the chemical-property reduction process. 

The effectiveness of each model during the chemical-property reduction process was tested by 
comparing the predicted leaching or non-leaching status of each chemical to its known or correct 
status and assessing the misclassification rate. Predicted leaching status of the chemicals by each CDA 
model required recalculation of both the MLV for every chemical and the universal MLT. Calculation of 
the MLV for each chemical and the universal MLT is described in the following sections. The 
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misclassification result from the initial, or full 11-parameter model, was the standard to compare the 
effectiveness of the CDA models generated from reduced numbers of chemical properties. Here the 
objective was to identify models with the fewest chemical properties while also minimizing the 
misclassification rate.  

3. Calculation of the Multivariate Leaching Value for Each Chemical 

The CDA procedure produces a set of Raw Canonical Coefficients (raw coefficients), each of which is 
associated with a chemical property. A single canonical score, denoted as the MLV, was calculated for 
each chemical: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = ∑ 𝐶𝐶𝑗𝑗
𝑁𝑁𝑗𝑗
𝑗𝑗=1  𝑉𝑉𝑗𝑗,𝑖𝑖         (Eq. 1) 

where MLVi is the single canonical score, Cj is the raw canonical coefficient of the jth predictor variable, 
Vj,i is the value of the jth predictor variable of the ith chemical.  

4. Calculation of the Multivariate Leaching Threshold 

The distribution of MLVs for the leacher group of chemicals provided the basis for developing a statistic 
to discriminate between leacher and non-leacher chemicals. This was possible because the categorical 
variable was encoded in the CDA model such that the leacher chemicals, in general, are expected to 
have a higher MLV. Unlike the SNV procedure, which utilized five threshold values unique to each of 
five chemical properties, this revised procedure produced a single threshold value from the MLVs. The 
threshold values for the SNV procedure were derived from the distributions for the chemical 
properties of the leacher chemicals. They were derived for each chemical property by selecting either 
the 10 or 90 percent confidence interval from their distribution of values. Similarly, the threshold value 
developed in this current study was also derived from the distribution of leacher chemicals. However, a 
more formal statistic was used to derive this value. A lower prediction limit was derived (Hahn and 
Meeker, 1991) at the 95 percent confidence level whereby a future chemical (a chemical not included 
in this study) will be included in the leacher category if its MLV equals or exceeds the lower prediction 
limit threshold. This value, denoted as the MLT, was calculated (PROC CAPABILITY, SAS, 2008) as the 
threshold statistic:  

MLT = XmL – (t(1-α: n-1))(1/M + 1/n)1/2(SL)      (Eq. 2) 

Where: 
MLT = the threshold value for membership in the known leacher distribution 
XmL = the mean MLV for the known leacher distribution 
t(1-α: n-1) = the Student’s t statistic with alpha set at 0.05 
M = the number of future predictions set at 1 
n = the number of observations in the known leacher distribution 
SL = the standard deviation of MLVs in the known leacher distribution 
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5. Cross-Validation of the Multivariate Discriminant Models 

Two formal cross-validation methods applicable to small datasets were used to evaluate the most 
promising CDA models. The first method, termed leave-one-out (LOO) (Huberty, 1994), required one of 
the 42 chemicals used in the study to be removed from the leacher or non-leacher group and the CDA 
model regenerated using the remaining 41 chemicals. A new MLV was computed for the chemical 
removed from the regenerated CDA model which represents the independent test chemical for use in 
cross-validation. A new MLT was derived from the recalculated MLVs for members in the known 
leacher group. To maintain its full independent status, the test chemical was not included in the 
recalculation of the MLT. The test chemical was then reclassified as a leacher or non-leacher by the 
regenerated CDA model with respect to the revised MLT. For each of the most promising CDA models 
evaluated, the procedure described above was repeated for all 42 leacher and non-leacher chemicals. 
Robust model validation was related to a low misclassification rate of the test chemicals. The LOO 
procedure precisely simulated the basic functionality and intended use of the CDA model where a new 
independent chemical, simulated here as the test chemical, would be identified as a potential leacher 
or non-leacher.  

The second cross-validation method, termed leave-pair-out (LPO), was similar to the LOO procedure 
but required removal of two chemicals from the combined group of leacher and non-leacher 
chemicals. The CDA model was then regenerated using the remaining 40 chemicals. A new MLV was 
computed for each of the two chemicals removed from the regenerated CDA model which represent 
the independent test chemicals for use in cross-validation. A new MLT was derived from the 
recalculated MLVs for members in the known leacher group. The test pair were then reclassified as a 
leacher or non-leacher with respect to the revised MLT. To maintain their full independent status, the 
test chemicals were not included in recalculation of the MLT. For each candidate CDA model evaluated, 
the LPO procedure described above was repeated to account for every possible pair of chemicals to 
represent the test chemicals. Again, robust model validation was related to a low misclassification rate 
of the test chemicals. LPO has been reported as a less biased validation procedure for quantifying 
classification error compared to LOO analyses (Montoya Perez, et al., 2019). For this current study, the 
LPO procedure provided 861 independent test pairs of chemicals for each candidate CDA model 
evaluated as opposed to just 42 test chemicals for the LOO procedure. The main limitation of the LPO 
procedure was its multiplicative analytical intensity with 861 regenerated cross-validation models for 
each candidate CDA model evaluated. Extending this cross-validation methodology to more than two 
independent test chemicals became computationally infeasible. 

SAS programming code that was developed to provide tests for distribution normality, t-test statistics 
and graphics, correlation analyses, CDA multivariate analysis, and LOO and LPO cross-validation are 
available upon request. 
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RESULTS 

Revision of the Leacher and Non-Leacher Chemicals 

Data from well water monitoring studies conducted in California were used for the development of the 
lists of leacher (Table 1) and non-leacher (Table 2) chemicals. These lists of chemicals provide 
information on application site, the number of detections or non-detections, (the latter in relation to 
the number of wells sampled and statewide use of the chemical), and the sampling or reporting 
agency. Some listed chemicals were not included in this current analysis because the empirical 
properties data for these compounds were unavailable or incomplete. These chemicals are identified in 
Tables 1 and 2, accordingly. Of the 42 chemicals used in this analysis, the majority were soil-applied 
herbicides; however, there were also 11 soil-applied insecticides, four herbicide degradates, two soil-
applied legacy fumigants, and one insecticide degradate. 

Chemicals detected in California’s groundwater from agricultural use are the basis for inclusion in the 
known leacher group (Table 1). The sheer number of detections for most of the chemicals indicate 
widespread movement to groundwater. Chemicals with fewer than 50 reported detections were 
verified by further investigation. Leaching status for each chemical was confirmed upon reports of 
residues in two or more wells located within adjacent square-mile sections of land. Detection of these 
residues in wells located in other agricultural areas added further evidence that the chemical moved to 
groundwater due to nonpoint-source agricultural use. 

Chemicals not detected in California groundwater, but with use patterns that enabled opportunity for 
movement to groundwater, are the basis for inclusion in the known non-leacher group (Table 2). Two 
chemicals in this group, alachlor and pendimethalin, have isolated detections in groundwater, with one 
and two detections, respectively, out of 2,994 well water samples analyzed. These detections were 
considered questionable and not the result of agricultural use (Troiano and Clayton, 2022).  

Analysis of well water sampling data resulted in several changes to the original leacher and non-
leacher chemicals upon which the SNV procedure was based. The following are changes to the known 
leacher- and non-leacher-identified chemicals used by Johnson (1991): 

• Older chemicals no longer included because of lack of available empirical properties data 
required for the CDA modeling process due to data exemption at the time of registration, 
voluntary withdrawal, or registration cancellation of the chemical prior to the deadline to 
submit the data: 

o Dieldrin, DDT, DDD, DDE, ametryne, chlordane, heptachlor, lindane, naled, silvex, 
toxaphene 

• Chemicals added as known leachers due to detections in subsequent well sampling studies: 

o Parent chemicals: norflurazon, hexazinone, imidacloprid, tebuthiuron 
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o Degradation products: aldicarb sulfone, aldicarb sulfoxide, alachlor ESA, metolachlor 
ESA, metolachlor OXA, deethylatrazine, deisopropylatrazine, diaminochlorotriazine, 
desmethylnorflurazon, 2,3,5,6-tetrachloroterephthalic acid 

• Chemicals changed from leacher to known non-leacher status: 

o Analytical chemistry update that separated parent from degradates — chlorthal-
dimethyl (DCPA) 

o Well sampling in California with no detection — alachlor, carbofuran, cyanazine, fonofos, 
oxamyl 

• Chemicals added as known non-leachers due to no detections in subsequent well sampling 
studies despite ongoing agricultural use: 

o Iprodione, methomyl, napropamide, oryzalin, oxyfluorfen, thiobencarb 

Screening of Chemical Properties to Include in the Multivariate Statistical 
Analysis 

Use of the screening steps outlined in the Methodology section resulted in Log10 transformation of all 
seven empirical properties to approximate normal distributions (Table 3). For the quantum- or 
molecular-derived chemical properties, Shapiro-Wilk tests on the raw values indicated distribution 
normality for 11 of the 22 properties. For several other molecular chemical properties, a normal 
distribution was indicated for either the leacher or non-leacher distribution, but not for both. In this 
case, Q-Q plots for ELUMO, EAU, SurfArea, SurfVolume, MinElPot, AccPolarArea75, PSA, and 
Polarizability graphically indicated that the raw data did approximate a normal distribution. For 
Conformers, Q-Q plots graphically indicated that Log10 transformation was acceptable in approximating 
distribution normality of both the leacher and non-leacher chemicals. Appendix III illustrates the 
comparison of the Q-Q plots for these chemical properties. Shapiro-Wilks tests for MaxElPot indicated 
that Log10 transformation was successful in approximating distribution normality of both the leacher 
and non-leacher chemicals. AccSurfArea was discarded from the study because neither the raw nor 
transformed data for this chemical property approximated distribution normality. In summary, only 
MaxElPot and Conformers were transformed by Log10 to satisfy distribution normality. The remaining 
molecular property values were maintained in their raw state. 

Student’s t-tests followed the normality tests to indicate potential for discrimination between the 
leacher and non-leacher groups for each chemical property (Table 3). Six of the seven empirical 
chemical properties and 13 of the 22 remaining molecular chemical properties met the t-test relaxed 
significance level P-value of ≤ 0.15. In Table 3, chemical properties that were not retained for further 
consideration are identified by an asterisk corresponding to the step in which they failed — failing to 
meet either distribution normality or the t-test P-value of ≤ 0.15. 

The remaining 19 chemical properties were subjected to a correlation analysis to measure potential 
redundancy in information. Several groups of highly correlated chemical properties were identified 
where the Pearson correlation coefficient for paired comparisons was ≥ |0.7| (Table 4). One group was 
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comprised of Log10-transformed values for Koc, solubility, and Kow. Log Koc was selected because it had 
the strongest t-test result. A second group indicated high correlation between Log10-transformed 
values for laboratory soil aerobic half-life and terrestrial field dissipation half-life. Log aerobic half-life 
was selected because it had a strong t-test result and because aerobic half-life studies are conducted 
under more controlled and uniform conditions, which would theoretically provide more stable data 
with less potential variation. A third group consisted of strong correlations between various molecular 
PolarArea and AccPolarArea properties. PolarArea 100 was selected because it had the highest overall 
correlation with all other members of the correlated group. Lastly, a fourth group indicated correlation 
between molecular SurfArea, SurfVolume, and Polarizability. SurfArea was selected because it had the 
strongest t-test result within the correlated group. The seven chemical properties of LogKh, Dipole, 
EHOMO, LogMaxElPot, MinLocIonPot, Hardness, and LogConformers were retained because each had 
relatively low correlation with all other chemical properties. These resulting 11 chemical properties 
chosen for testing in the initial CDA analysis are identified by hash signs (#) in the column and row 
headers in the correlation analyses results (Table 4).  

Multivariate CDA Analysis and Model Selection 

The initial CDA model incorporating all 11 chemical properties, denoted as the full model, indicated 
highly significant differences (P < 0.001) for all four multivariate measures of statistical significance, 
indicating a strong discrimination between the distributions of the known leacher and non-leacher 
chemicals (Table 5A). Graphical comparison of the distributions of MLV scores indicated a distinct 
separation between the two groups of chemicals (Figure 1). In the full model, the MLV for each 
chemical was calculated by summing the products of the raw canonical coefficients associated with 
each of the 11 chemical property values. Comparing each chemical’s MLV against the MLT revealed 
that only methomyl and 1,3-dichloropropene (1,3-D), members of the non-leacher group, were 
misclassified as predicted leacher chemicals. As described earlier, the MLT was calculated from the 
distribution of MLVs from the leacher group of chemicals as the estimated lower prediction limit at the 
95 percent confidence level for including an additional chemical into its distribution. From a 
groundwater contamination perspective, misclassification of a non-leacher as a leacher has fewer 
adverse consequences than misclassification of a leacher as a non-leacher. Therefore, based on 
misclassification of only two non-leacher chemicals as leacher chemicals, the full model is judicious and 
practically robust. 

New CDA models were developed using reduced numbers of chemical properties. This procedure was 
used to identify if a simpler, reduced-parameter model was as effective as the full 11-parameter model 
in discriminating between the known leacher and non-leacher chemicals. In the full model, the 
standardized coefficient associated with LogConformers was smaller than those associated with the 
other chemical parameters in terms of absolute value, indicating it was the least influential in the CDA 
analysis for discriminating between the leacher and non-leacher chemicals (Table 6). Therefore, this 
property was excluded in the next reduced-parameter CDA model. Leacher and non-leacher 
classification of chemicals for the reduced-parameter model with ten chemical properties was the 
same as the full model, again with only methomyl and 1,3-D misclassified as predicted leachers. 
Further sequential reduction of chemical properties from the CDA analysis resulted in continued 
misclassification of only methomyl and 1,3-D. This was observed from the full model, identified as CDA 
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model No. 1, through the four-parameter CDA model, identified as CDA model No. 8 (Table 7). The 
three-parameter model (CDA model No. 9) resulted in the additional misclassification of the chemical 
napropamide (Table 7).  

Candidate models chosen from Table 7 for cross-validation analysis using the LOO and LPO procedures 
were CDA models No. 7 (two misclassifications), No. 8 (two misclassifications), and No. 9 (three 
misclassifications). These selected models featured the fewest chemical properties coinciding with 
either no additional or only one additional misclassification compared to the full model. Expanded 
results for each of the CDA models and for the reduced-parameter selection procedure are reported in 
Appendix IV. 

Model Cross-Validation 

Cross-validation using the LOO methodology required sequential removal of every chemical from each 
of the three CDA candidate models (No. 7, 8, and 9; Table 7). Forty-two models were regenerated for 
each candidate model to allow for every leacher and non-leacher chemical to represent the 
independent test chemical. The test chemical for each regenerated model was reclassified as a leacher 
or non-leacher based on its updated MLV and the revised MLT.  

The misclassification rate for candidate model No. 7 was 4.8% because two chemicals (methomyl and 
1,3-D) were misclassified as leacher chemicals out of a total of 42 leacher and non-leacher chemicals 
used in the study. The LOO analysis of candidate model No. 7 also resulted in a 4.8% misclassification 
rate because every independent test chemical was correctly classified except for when methomyl and 
1,3-D were the test chemicals. Interestingly, when bentazon or EDB was the independent test chemical 
there was greater separation between the leacher and non-leacher chemicals resulting in 1,3-D being 
correctly classified and only methomyl misclassified.  

The misclassification rate for candidate model No. 8 was 4.8%, again because only methomyl and 1,3-D 
were misclassified as leacher chemicals. The LOO analysis of candidate model No. 8 resulted in a 9.5% 
misclassification rate because four chemicals (methomyl, 1,3-D, napropamide, and norflurazon) were 
misclassified when they were the independent test chemicals. The remaining 38 test chemicals in the 
LOO analysis of candidate model No. 8 were correctly classified.  

Finally, the misclassification rate for candidate model No. 9 was 7.1% because three chemicals 
(methomyl, 1,3-D, and napropamide) were misclassified out of the total of 42 leacher and non-leacher 
chemicals used in the study. The LOO analysis of candidate model No. 9 resulted in a 14.3% 
misclassification rate of the independent test chemicals because six chemicals (methomyl, 1,3-D, 
napropamide, bentazon, norflurazon, and carbofuran) were misclassified when they were the test 
chemicals.  

Misclassification of norflurazon in the LOO analysis of candidate model No. 8, and norflurazon and 
bentazon in the LOO analysis of candidate model No. 9 as non-leachers is noteworthy because these 
two chemicals are known leachers and have frequently been detected in California groundwater. 
Candidate model No. 9 was excluded from LPO cross-validation analysis based on its shift to a 
considerably greater misclassification of chemicals in the LOO analysis. 
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LPO cross-validation analysis was then conducted whereby all 42 leacher and non-leacher chemicals 
used in the study were arranged into every possible paired combination to produce 861 models 
regenerated for each candidate model (No. 7 and 8; Table 7). The independent test pair removed from 
each regenerated model was evaluated for leacher or non-leacher reclassification status. As stated 
above, candidate models No. 7 and 8 had a 4.8% misclassification rate because methomyl and 1,3-D 
were misclassified as leacher chemicals.  

The LPO analysis of candidate CDA model No. 7 resulted in a 10.1% misclassification rate of the 
independent test chemicals. Most of these misclassifications were of methomyl (41 misclassifications) 
and 1,3-D (40 misclassifications) when they were paired with the remaining test chemicals, except for 
1,3-D which was correctly classified when paired with EDB. Bentazon, EDB, and oxyfluorfen were each 
misclassified once when paired with another test chemical. Norflurazon was misclassified when paired 
with three other test chemicals.  

The LPO analysis of candidate CDA model No. 8 resulted in a 17.8% misclassification rate of the 
independent test chemicals. Most of these misclassifications were methomyl, 1,3-D, and norflurazon, 
each with 41 misclassifications. In addition, napropamide had 29 misclassifications and bentazon had 
one misclassification when they were paired with various other independent test chemicals.  

Although candidate models No. 7 and No. 8 only had two misclassifications (methomyl and 1,3-D), the 
LPO cross-validation analysis revealed a disproportionately higher misclassification rate for candidate 
model No. 8. The many misclassifications of the known leacher norflurazon as a non-leacher when 
cross validating candidate model No. 8 was particularly concerning when compared to model No. 7.  

CDA candidate models No. 7 and 8 with five and four model input parameters, respectively, had only 
two misclassifications out of the 42 chemicals used to develop each model. Candidate model No. 9 
with only three parameters had three misclassifications out of the 42 chemicals used to develop the 
model. However, the cross-validation results from the LOO and LPO analyses conclusively indicated 
that CDA candidate model No. 7 with the five model input parameters exhibited substantially greater 
consistency during reclassification of the independent test chemicals. Thus, candidate model No. 7 was 
identified as considerably more stable and reliable compared to the other two candidate models 
tested. 

Multivariate Model to Determine Potential for Leaching 

The CDA model generated from five chemical properties of dipole, LogMaxElPot, EHOMO, LogKoc, and 
LogAero was as effective as the full 11-parameter model in discriminating between the known leacher 
and non-leacher chemicals (CDA model No. 7, Table 7). This model produced a highly significant 
statistical difference in MLVs (raw canonical scores) between the known leacher and non-leacher 
distributions of chemicals as indicated by statistics (Table 5B) and the large graphical separation of the 
two distributions (Figure 2). LOO and LPO cross-validation analyses of this model revealed a low 
misclassification rate of the independent test chemicals for their leacher or non-leacher status. This 
contrasted with the models having four or three chemical properties (CDA models No. 8 and 9, Table 7) 
where a higher misclassification rate was indicated for the independent test chemicals, including 
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misclassifications of known leachers as non-leachers. Equation 3 presents the raw canonical 
coefficients associated with the five chemical-specific properties to produce an MLV score used for 
evaluating a chemical for leaching potential:  

MLV  = 1.9349 (Log10 soil aerobic half-Life) – 1.2197 (Log10 KOC) + 0.1562 
(dipole moment) – 0.9140 (EHOMO) + 2.2728 (Log10 MaxElPot) 

(Eq. 3) 

The chemical-specific MLV is then compared to the derived MLT value of 14.4706. An MLV score equal 
to or greater than the MLT value classifies the chemical as a predicted leacher. 

DISCUSSION 
The revised multivariate approach to identify a chemical’s potential for movement to groundwater 
retained some of the methodology used in the original SNV procedure developed to comply with the 
PCPA (Wilkerson and Kim, 1986; Johnson, 1991). Specifically, both approaches identified potential 
leachers using statistics that compared the distributions of chemical-specific properties or property-
derived scores between chemicals recognized as known leachers or non-leachers. In the presence of 
statistical differences between the distributions, membership of a chemical into the distribution of 
leachers was determined using a statistical interval. However, this revised approach includes the 
following improvements:  

• Revision of the known leacher and non-leacher chemicals to incorporate a more rigorous body 
of well water monitoring data;  

• Inclusion of additional chemical-specific properties to develop a model that distinguishes 
between the known leacher and non-leacher chemicals;  

• Use of a multivariate analysis to develop an effective model that discriminates membership 
between the known leacher and non-leacher chemicals;  

• Development of a single test score to identify a chemical’s leaching potential whereby a 
chemical’s MLV score is compared to the MLT value;  

• Utilization of a more formal statistic for establishing a threshold value for discriminating 
between known leacher and non-leacher chemicals, namely a prediction limit at the 95 percent 
confidence level for the addition of a new chemical into the leacher distribution; and  

• Inclusion of two cross-validation procedures for testing the consistency and stability of the 
multivariate model for identifying leacher and non-leacher chemicals. 

With respect to development of the known leacher and non-leacher lists, only well water sampling 
data from studies conducted in California were evaluated. Compared to the original approach that was 
based on nationwide well water sampling data, this restriction provided greater confidence in the 
reporting of detections and non-detections because sampling was conducted in areas of known high 
pesticide use and known vulnerability to pesticide movement to groundwater. Use of these data 
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resulted in a substantial difference from the listing of chemicals categorized as known leachers and 
non-leachers by Johnson (1991). For example, some chemicals previously identified as leachers were 
reclassified as non-leachers. Most of these changes were based on the more recent targeted well 
sampling studies conducted by GWPP, but updated chemical analytical methodology also accounted 
for some changes. 

The multivariate statistical approach used to identify an effective model indicated that a model 
containing five chemical-specific properties was extremely effective in discriminating between the 
revised known leacher and non-leacher chemicals. The properties included in this model were 
empirically-derived values for Log10 soil aerobic half-life and Log10 Koc, and the calculated molecular 
parameters dipole moment, EHOMO, and Log10 MaxElPot. These variables relate to the current 
theoretical basis and general understanding of the processes responsible for chemical movement to 
groundwater. Soil aerobic half-life and EHOMO relate to persistence of a chemical in the soil 
environment. EHOMO directly relates to the ionization potential (i.e., the energy necessary to remove an 
electron from the neutral atom) and is a measure of the susceptibility of the molecule to chemical 
breakdown (Karelson et al., 1996). Koc, dipole, and MaxElPot characterize potential mobility of a 
chemical in the soil environment and the latter two indicate the polarity and hydrogen bonding 
capacity of a molecule, respectively — both properties strongly linked to water solubility. With respect 
to mobility of a chemical, previous studies have established dipole and MaxElPot parameters as 
explanatory variables for empirical measures of water solubility, soil sorption, and Kow (Mamy, 2015; 
Rathi, et al., 2020; Weng, et al., 2002; Doucette, 2003). The inclusion of chemical persistence and 
mobility properties in the multivariate CDA model reflects the specified grouping of chemical 
properties related to pesticide movement to groundwater as specified in the original PCPA legislation. 
Appendix V presents an in-depth discussion of how dipole, EHOMO, and MaxElPot values reflect potential 
persistence and mobility of a chemical in soil.  

The enhanced performance of the proposed CDA model with five chemical properties is attributable to 
its multivariate-based development, a more robust list of known leacher- and non-leacher-classified 
chemicals, inclusion of additional chemical properties data, and stability in the measurement and 
calculation of these property values. With respect to the last attribute, soil aerobic half-life and Koc are 
determined from studies conducted in pre-conditioned soil under controlled laboratory conditions 
resulting in more measurement stability compared to other half-life data generated in native soil under 
actual field conditions, such as from terrestrial field dissipation studies. Nonetheless, since uncertainty 
in chemical-specific values for soil aerobic half-life and Koc exists, median values for these properties 
were used for the CDA model-development set of chemicals. Propagation of these uncertainties with 
respect to evaluation of new chemicals by the CDA model would likely increase their potential for 
misclassification. Dipole, MaxElPot, and EHOMO are calculated from 3-D conformational data and 
chemical-specific regeneration of their values is invariant under the same quantum modeling 
construct.  

The misclassification rate of the proposed five-chemical-property model was approximately 5% where 
the leaching status of only two of the 42 chemicals were misclassified. In contrast, the SNV procedure 
by Johnson (1991) utilizing a univariate statistical approach had a reported chemical misclassification 
rate of 36%. However, contributing to this relatively high misclassification rate was the 
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misidentification of several known leacher and non-leacher chemicals used for model development. 
With respect to the SNV process, the multivariate-based CDA model developed in this study provides a 
more accurate estimate of an agricultural chemical’s potential to leach to California’s groundwater. 
Furthermore, cross-validation of the selected CDA model using the LOO and LPO analyses indicated no 
significant loss in model performance or stability when predicting the leaching status of a chemical or 
pair of chemicals that were independent of the chemicals used for model development. This finding 
was particularly compelling because these analyses simulated the precise functionality of the proposed 
model as mandated by the PCPA as it applies to evaluating the leaching potential of new, independent 
chemical active ingredients or degradates. 

CONCLUSIONS 
With improved discrimination between the revised known leacher and non-leacher chemicals, and 
inherent stability indicated in the LOO and LPO cross-validation procedures, the five-parameter 
multivariate model developed in this study provides improved capability in identifying potential 
groundwater leachers compared to the SNV process. The new model requires data for soil aerobic half-
life, Koc, and three molecular properties representing the values for dipole, EHOMO, and MaxElPot.  

The following procedure is recommended for identifying leaching potential of a specific chemical: 

1. In the presence of multiple values, utilize the median value for the soil aerobic half-life (days) 
and Koc (cm3/g) of the chemical. 

2. Calculate the molecular dipole moment (Debye), EHOMO (eV), and MaxElPot (kJ/mol) values from 
the chemical structure while in its equilibrium state using the Spartan ’20 software utilized in 
this study. Appendix VI provides guidance for generating the molecular variables values for use 
in the proposed multivariate model. 

3. Derive the MLV for the chemical as: 

MLV = 1.9349 (Log10 soil aerobic half-life) – 1.2197 (Log10 Koc) + 0.1562 (dipole moment) – 0.9140 
(EHOMO) + 2.2728 (Log10 MaxElPot) 

4. Compare the MLV for the chemical to the MLT value of 14.4706. The MLT value was derived 
from the distribution of MLV scores for the group of known leacher chemicals. If the MLV ≥ MLT 
then the chemical is identified as a member of the leacher group of chemicals and has the 
potential to move to California’s groundwater.  
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TABLES 
Table 1. Pesticide chemicals and degradation products (Deg) with verified detections in California 
groundwater prior to 2019 resulting from agricultural applications. Chemicals with insufficient 
physical/chemical properties data were excluded from the analysis. 

Chemical 
Application Site of 
Chemical or Parent 

Chemical 

Wells with 
Detections Reporting Agency Included in 

Analysis 

1,2-Dichloropropane (1,2-D) Soil-applied fumigant 303 DPR, USGS, SWRCB Yes 

1,2,3-Trichloropropane Impurity in soil-applied 
fumigant 379 SWRCB No 

2,3,5,6-Tetrachloroterephthalic acid 
(TPA) (Deg) Soil-applied herbicide 35 DPR Yes 

3,4-Dichloroaniline (Deg) Soil-applied herbicide 106 USGS No 
Alachlor ethanesulfonic acid 
(ESA) (Deg) Soil-applied herbicide 34 DPR No 

Aldicarb sulfone (Deg) Soil-applied insecticide 61 DPR, RWQB Yes 

Aldicarb sulfoxide (Deg) Soil-applied insecticide 25 DPR, RWQB No 

Atrazine Soil-applied herbicide 684 DPR, USGS, SWRCB Yes 

Bentazon Rice herbicide 153 DPR, USGS, SWRCB Yes 
Bromacil Soil-applied herbicide 323 DPR, USGS Yes 
Deethylatrazine (Deg) Soil-applied herbicide 572 DPR, USGS Yes 

Deisopropylatrazine (Deg) Soil-applied herbicide 549 DPR, USGS, 
Registrant Yes 

Diaminochlorotriazine (Deg) Soil-applied herbicide 373 DPR, USGS, 
Registrant No 

Dibromochloropropane (DBCP) Soil-applied fumigant 3399 DPR, USGS, SWRCB, 
Fresno, Kern Yes 

Diuron Soil-applied herbicide 594 DPR, USGS, SWRCB Yes 

Ethylene dibromide (EDB) Soil-applied fumigant 204 DPR, USGS, SWRCB, 
Kern Yes 

Hexazinone Soil-applied herbicide 82 DPR, USGS Yes 

Imidacloprid Soil-applied insecticide 13 DPR, USGS Yes 

Metolachlor ESA (Deg) Soil-applied herbicide 81 DPR, USGS Yes 

Metolachlor oxanilic acid (OXA) (Deg) Soil-applied herbicide 27 DPR, USGS No 

Norflurazon Soil-applied herbicide 101 DPR, USGS Yes 

Desmethylnorflurazon (Deg) Soil-applied herbicide 131 DPR, USGS No 

Prometon Soil-applied herbicide 145 DPR, USGS Yes 

Simazine Soil-applied herbicide 1328 DPR, USGS, 
Registrant Yes 

Tebuthiuron Soil-applied herbicide 53 DPR, USGS Yes 
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Table 2. Pesticide chemicals and degradation products (Deg) not detected in California groundwater 
prior to 2019 following agricultural applications. Chemicals lacking physical/chemical properties data 
were excluded from the analysis. Minimum detection limit (MDL) for groundwater analysis was 0.05 
µg/L except for 1,3-dicloropropene and methyl bromide where the MDL was 0.1 µg/L.  

Chemical 
Application Site of 
Chemical or Parent 

Chemical of Degradate 

Statewide 
Application of 

Chemical or 
Parent Chemical 

of Degradate 
1990-2005 

(millions lbs) 

Detections / Number 
of Wells Sampled 

Included 
in 

Analysis DPR USGS 

1,3-Dicloropropene Soil-applied fumigant 56.0 0/54 0/971 Yes 
2,6-Diethlaniline (Deg) Soil-applied herbicide 0.7 0/0 0/2994 No 
3,5-Dichloroaniline (Deg) Soil-applied fungicide 6.8 0/0  0/1000 No 
Alachlor Soil-applied herbicide 0.7 0/259 1/2994 Yes 
Carbaryl Soil-applied insecticide 9.2 0/123 0/2994 Yes 
Carbofuran Soil-applied insecticide 3.1 0/119 0/1241 Yes 
Chlorthal-dimethyl (DCPA) Soil-applied herbicide 6.7 0/279 0/2994 Yes 
Cyanazine Soil-applied herbicide 4.3 0/823 0/1000 Yes 
Dimethoate Soil-applied insecticide 8.6 0/120 0/2994 Yes 
Disulfoton Soil-applied insecticide 1.7 0/83 0/964 Yes 
Disulfoton sulfone (Deg) Soil-applied insecticide 1.7 0/0 0/1000 No 
Ethoprop Soil-applied insecticide 0.6 0/86 0/1000 Yes 
Fenamiphos Soil-applied insecticide 2.1 0/166 0/2959 Yes 
Fenamiphos sulfone (Deg) Soil-applied insecticide 2.1 0/61 0/2993 No 
Fenamiphos sulfoxide (Deg) Soil-applied insecticide 2.1 0/67 0/2341 No 
Fonofos Soil-applied insecticide 0.6 0/111 0/2994 Yes 
Iprodione Soil-applied fungicide 6.8 0/124 0/2992 Yes 
Linuron Soil-applied herbicide 1.4 0/244 0/840 Yes 
Methomyl Soil-applied insecticide 9.6 0/142 0/810 Yes 
Methyl bromide Soil-applied fumigant 215 0/9 0/931 Yes 
Napropamide Soil-applied herbicide 2.2 0/231 0/77 Yes 
Oryzalin Soil-applied herbicide 9.6 0/275 0/840 Yes 
Oxamyl Soil-applied insecticide 1.6 0/3 0/804 Yes 
Oxyfluorfen Soil-applied herbicide 7.2 0/2 0/1000 Yes 
Pendimethalin Soil-applied herbicide 6.5 0/0 2/2994 Yes 
Phorate Soil-applied insecticide 1.8 0/77 0/2994 Yes 
Phorate oxygen analog (Deg) Soil-applied insecticide 1.8 0/0 0/2958 No 
Propyzamide Soil-applied herbicide 1.9 0/162 0/2993 Yes 
Thiobencarb Soil-applied herbicide 8.7 0/273 0/1241 Yes 
Trifluralin Soil-applied herbicide 19.8 0/9 0/2994 Yes 
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Table 3. Shapiro-Wilk (W) testing for distribution normality of chemical properties within the leacher 
and non-leacher groups. Logarithm Base-10-transformed data were selected when indicating 
distribution normality in contrast to raw data. T-tests indicated differences between leacher and non-
leacher chemicals for the means of each chemical property. Pesticide properties considered for 
inclusion in the canonical discriminant analysis (CDA) were dependent on distribution normality, 
generally when W > 0.05, and t-test probability at P ≤ 0.15. An asterisk (*) indicates property excluded 
from the study; placement of the * indicates the analysis step it failed. 

Pesticide 
Property 

Raw Data Log10 Transformed 
T-test 

(t ≤ 0.15) 

Considered 
Further for 

CDA Modeling 
Leachers 

(W > 0.05) 

Non-
Leachers 

(W > 0.05) 

Leachers 
(W > 0.05) 

Non-
Leachers 

(W > 0.05) 
Empirical Properties  
Solubility <0.001 <0.001 0.78 0.61 0.02 Yes 
Koc <0.001 <0.001 0.34 0.84 0.002 Yes 
Aerobic <0.001 <0.001 0.68 0.88 <0.001 Yes 
TFD 0.001 <0.001 0.57 0.83 <0.001 Yes 
Kow <0.001 <0.001 0.08 0.48 0.005 Yes 
VP* <0.001 <0.001 0.04 0.11 0.96* No 
Kh <0.001 <0.001 0.1 0.05 0.08 Yes 
Molecular Properties  
MolecularWt* 0.77 0.17     0.25* No 
EHOMO 0.07 0.77   0.06 Yes 
ELUMO* 0.48 0.02     0.65* No 
Electronegativity* 0.66 0.22     0.44* No 
Hardness 0.27 0.13     0.13 Yes 
EAU* <0.001 0.27 0.002 0.66 0.76* No 
Dipole 0.19 0.84     0.05 Yes 
Conformers <0.001 <0.001 <0.001 0.64 0.03 Yes 
SurfArea 0.10 0.006     0.05 Yes 
SurfVolume 0.27 0.004     0.07 Yes 
AccSurfArea* 0.02* 0.0009*  0.0024* <0.001*  No 
MinElPot* 0.009 0.82  <0.001  0.03 0.95* No 
MinLocIonPot 0.09 0.19   0.09 Yes 
PSA* 0.10 0.007     0.62* No 
PolarArea75* 0.83 0.62     0.32* No 
AccPolarArea75* 0.49 0.07     0.34* No 
PolarArea100 0.08 0.42     0.06 Yes 
AccPolarArea100 0.09 0.21     0.06 Yes 
PolarArea125 0.14 0.70     0.04 Yes 
AccPolarArea125 0.18 0.64     0.06 Yes 
MaxElPot 0.53 0.03 0.24 0.07 0.04 Yes 
Polarizability 0.25 0.004 0.15 <0.001 0.06 Yes 
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Table 4. Correlation coefficients between chemical properties for the combined set of leacher and non-leacher 
pesticides. The selection of properties was determined by criteria in Table 3. Asterisks correspond to 
correlation coefficients as |0.7| ≤ * < |0.8|, |0.8| ≤ ** < |0.9|, and |0.9| ≤ *** ≤ |1.0|. Hash sign (#) identifies 
chemical properties retained for canonical discriminant analysis model. 

Pearson Correlation Coefficient, N=42 
Prob > |r| under H0 

 LogSolub LogKoc# LogKow LogAero# LogTFD LogKh# PolarArea100# AccPolarArea100 PolarArea125 

LogSolub   **-0.872 
<0.001 

**--0.819 
<0.001 

-0.094 
0.555 

-0.012 
0.942 

-0.291 
0.062 

-0.025 
0.875 

-0.024 
0.990 

0.215 
0.171 

LogKoc#   
    **-0.802 

<0.001 
0.097 
0.542 

-0.056 
0.726 

0.329 
0.033 

-0.048 
0.762 

-0.026 
0.868 

-0.270 
0.084 

LogKow   
  

  
    0.070 

0.659 
0.018 
0.912 

0.475 
0.002 

-0.314 
0.043 

-0.295 
0.058 

-0.524 
<0.001 

LogAero#   
  

  
  

  
    *0.760 

<0.001 
-0.235 
0.134 

0.302 
0.052 

0.279 
0.074 

0.275 
0.078 

LogTFD   
  

  
  

  
  

  
    -0.194 

0.219 
0.183 
0.246 

0.182 
0.247 

0.139 
0.380 

LogKh#   
  

  
  

  
  

  
  

  
    -0.680 

<0.001 
-0.642 
<0.001 

*-0.749 
<0.001 

PolarArea 
100# 

  
  

  
  

  
  

  
  

  
  

  
    ***0.979 

<0.001 
***0.916 

<0.001 
AccPolar 
Area100 

  
  

  
  

  
  

  
  

  
  

  
  

  
    **-0.875 

<0.001 
AccPolar 
Area125 

0.212 
0.177 

-0.240 
0.125 

-0.506 
<0.001 

0.242 
0.123 

0.116 
0.466 

*-0.731 
<0.001 

***0.906 
<0.001 

***0.901 
<0.001 

***0.981 
<0.001 

Dipole# -0.002 
0.988 

-0.023 
0.886 

-0.340 
0.028 

0.290 
0.062 

0.041 
0.795 

-0.509 
<0.001 

0.670 
<0.001 

0.603 
<0.001 

0.646 
<0.001 

EHOMO -0.272 
0.081 

0.232 
0.140 

0.118 
0.458 

-0.027 
0.865 

-0.271 
0.083 

-0.284 
0.069 

0.193 
0.221 

0.084 
0.595 

0.215 
0.172 

LogMax 
ElPot# 

0.097 
0.542 

-0.215 
0.172 

-0.335 
0.030 

0.111 
0.486 

0.257 
0.101 

-0.398 
0.009 

0.563 
<0.001 

0.539 
<0.001 

0.553 
<0.001 

MinLoc 
IonPot# 

-0.192 
0.224 

0.138 
0.385 

0.078 
0.623 

0.313 
0.043 

0.548 
<0.001 

-0.094 
0.555 

0.212 
0.177 

0.278 
0.075 

0.124 
0.433 

Hardness 0.550 
<0.001 

-0.545 
<0.001 

-0.325 
0.036 

-0.158 
0.319 

-0.048 
0.761 

0.268 
0.086 

-0.380 
0.013 

-0.361 
0.019 

-0.248 
0.114 

Polarizability -0.477 
0.001 

0.414 
0.006 

0.290 
0.063 

0.091 
0.569 

-0.047 
0.768 

-0.424 
0.005 

0.373 
0.015 

0.343 
0.026 

0.294 
0.059 

SurfArea# -0.479 
0.001 

0.414 
0.006 

0.315 
0.042 

0.066 
0.677 

-0.061 
0.697 

-0.403 
0.008 

0.371 
0.016 

0.339 
0.028 

0.294 
0.059 

Surf 
Volume 

-0.477 
0.001 

0.401 
0.008 

0.303 
0.051 

0.083 
0.601 

-0.049 
0.757 

-0.416 
0.006 

0.364 
0.018 

0.342 
0.027 

0.272 
0.082 

Log 
Conformers# 

-0.145 
0.359 

0.070 
0.659 

0.128 
0.418 

-0.262 
0.093 

-0.440 
0.004 

-0.153 
0.334 

0.020 
0.901 

0.005 
0.974 

-0.034 
0.832 

 
 Dipole# EHOMO# LogMaxElPot# MinLocIonPot# Hardness# Polarizability SurfArea# SurfVolume LogConformers# 
AccPolar 
Area125 

0.600 
<0.001 

0.129 
0.417 

0.502 
<0.001 

0.170 
0.281 

-0.236 
0.132 

0.304 
0.050 

0.301 
0.053 

0.289 
0.063 

-0.007 
0.963 

Dipole#  0.348 
0.024 

0.314 
0.043 

-0.035 
0.826 

-0.230 
0.143 

0.329 
0.033 

0.294 
0.059 

0.310 
0.046 

0.142 
0.371 

EHOMO#   0.178  
0.259  

-0.320 
0.039 

-0.613 
<0.001 

0.572 
<0.001 

0.561 
<0.001 

0.532 
<0.001 

0.319 
0.040 

LogMax 
ElPot#     

  
0.318 
0.040 

-0.316 
0.041 

-0.017 
0.913 

-0.013 
0.933 

-0.058 
0.713 

-0.340 
0.028 

MinLoc 
IonPot#     -0.284 

0.069 
0.058 
0.716 

-0.020 
0.901 

0.041 
0.795 

-0.449 
0.003 

Hardness#      -0.670 
<0.001 

-0.639 
<0.001 

-0.656 
<0.001 

-0.131 
0.407 

Polarizability       ***0.983 
<0.001 

***0.994 
<0.001 

0.579 
<0.001 

SurfArea#        ***0.983 
<0.001 

0.604 
<0.001 

Surf 
Volume         0.629 

<0.001 
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Table 5A. Statistical significance of full 11-parameter multivariate canonical discriminant analysis 
model to discriminate between the leacher and non-leacher distributions of chemicals. 

Multivariate Statistics and Exact F Statistics 
S=1    M=4.5    N=14 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.27474251 7.20 11 30 <0.0001 
Pillai's Trace 0.72525749 7.20 11 30 <0.0001 
Hotelling-Lawley Trace 2.63977167 7.20 11 30 <0.0001 
Roy's Greatest Root 2.63977167 7.20 11 30 <0.0001 

 

 
Table 5B. Statistical significance of reduced five-parameter multivariate canonical discriminant analysis 
model to discriminate between the leacher and non-leacher distributions of chemicals. 

Multivariate Statistics and Exact F Statistics 
S=1    M=1.5    N=17 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.28613842 17.96 5 36 <0.0001 
Pillai's Trace 0.71386158 17.96 5 36 <0.0001 
Hotelling-Lawley Trace 2.49481207 17.96 5 36 <0.0001 
Roy's Greatest Root 2.49481207 17.96 5 36 <0.0001 
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Table 6. Total standardized canonical coefficients for the full 11-parameter canonical discriminant 
analysis model. Absolute relative magnitude of each coefficient is indicative of the property’s 
effectiveness in discriminating between the leacher and non-leacher chemical groups. 

Chemical Properties Total Standardized Canonical Coefficient 
LogKoc -0.933 
LogAero 1.281 
LogKh 0.220 
PolarArea100 0.064 
Dipole 0.425 
EHOMO -0.404 
LogMaxElPot 0.378 
MinLocIonPot 0.071 
Hardness 0.076 
SurfArea -0.166 
LogConformers 0.026 
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Table 7. Misclassification of leacher and non-leacher chemicals resulting from development of the 
canonical discriminant analysis (CDA) models. Stepwise removal of chemical properties during the 
model-parameter-reduction process was ordered from the least to most influential property as 
identified by standardized canonical coefficients. A check mark symbol () indicates inclusion of 
chemical property in model. A cross mark symbol () indicates exclusion of property from model. An 
asterisk symbol (*) identifies the most promising models that were evaluated by the leave-one-out and 
leave-pair-out cross-validation analyses. 

 
Chemical Properties Included in CDA Model 

(Empirical and Molecular)   

CDA 
Model
No.  

LogConform
ers 

M
inLocIonPot 

PolarArea100 

SurfArea 

Hardness 

LogK
h  

Dipole 

LogM
axElPot 

E
HO

M
O  

LogK
oc  

LogAero 

Number of 
Leacher Group 
Misclassifications 

Number of Non-
Leacher Group 
Misclassifications 
(Chemicals 
Misclassified) 

1            0 2 (Methomyl; 1,3-D) 

2            0 2 (Methomyl; 1,3-D) 

3            0 2 (Methomyl; 1,3-D) 

4            0 2 (Methomyl; 1,3-D) 

5            0 2 (Methomyl; 1,3-D) 

6            0 2 (Methomyl; 1,3-D) 

7*            0 2 (Methomyl; 1,3-D) 

8*            0 2 (Methomyl; 1,3-D) 

9*            0 3 (Methomyl; 1,3-D; 
Napropamide) 
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FIGURES 
Figure 1. Distributions of Multivariate Leaching Values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the full 11-parameter 
canonical discriminant analysis model. Box plots indicate the mean, median, interquartile range, and 
minimum and maximum MLVs of each chemical group. Numerical statistics indicate descriptive and t-
test results between the groups. 

 
 Descriptive Statistics 

Chemical Group N Mean Std Dev Std Err Minimum Maximum 

L 18 14.4394 0.8119 0.1914 13.1877 16.0303 

NL 24 11.2354 1.1189 0.2284 8.5737 13.3242 

Diff (1-2)  3.2040 1.0000 0.3118   
Equality of Variances   

Method Num DF Den DF F Value Pr > F   

Folded F 23 17 1.90 0.1786   
T-Test   

Method Variances DF t Value Pr > |t|   

Pooled Equal 40 10.28 <0.0001   
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Figure 2. Distributions of Multivariate Leaching Values (MLVs) with associated normal and kernel fits 
for the leacher (L) and non-leacher (NL) chemical groups of the five-parameter canonical discriminant 
analysis model comprised of Log soil aerobic half-life, LogKoc, dipole, EHOMO and LogMaxElPot. Box plots 
indicate the mean, median, interquartile range, and minimum and maximum MLVs of each chemical 
group. Numerical statistics indicate descriptive and t-test results between the groups. 

 
Descriptive Statistics 

Chemical Group N Mean Std Dev Std Err Minimum Maximum 

L 18 16.0751 0.8977 0.2116 14.8448 17.6204 

NL 24 12.9603 1.0693 0.2183 10.1242 14.6740 

Diff (1-2)  3.1148 1.0000 0.3118   

Equality of Variances   

Method Num DF Den DF F Value Pr > F   

Folded F 23 17 1.42 0.4639   

T-Test   

Method Variances DF t Value Pr > |t|   

Pooled Equal 40 9.99 <0.0001   
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Table I-1. Abbreviation and description of each empirical chemical property. 

Parameter 
Abbreviation 
Used in 
Report 

Units  * Description 

Water Solubility Solubility mg/L Amount of chemical that can dissolve in water 
at a specific temperature. 

Soil Adsorption 
Coefficient Normalized 
for Soil Organic Carbon 
Content 

Koc cm3/g 

Soil partition coefficient for the ratio of 
amount of chemical sorbed onto soil vs 
amount in solution adjusted for soil organic 
carbon content. 

Laboratory-derived Soil 
Aerobic Half-life Aerobic days Laboratory study conducted to determine the 

dissipation rate in soil.  

Field-derived Soil Half-
life TFD days 

Half-life generated from Terrestrial Field 
Dissipation (TFD) studies. TFD studies are 
conducted with an end-use formulation (not 
the technical AI) to determine the extent of 
pesticide residue dissipation in the field under 
actual use conditions.  

Octanol/Water 
Partition Coefficient Kow none Laboratory measure of the ratio of a chemical 

partitioned between octanol and water. 

Vapor Pressure VP mPa 

Pressure exerted by a vapor in 
thermodynamic equilibrium with the 
condensed phase either liquid or solid at a 
given temperature in a closed system. 

Henry's Law Constant Kh atm m3/mol Ratio of the relative abundance of a chemical 
in the gas vs liquid phase. 

 

* Units: atm = standard atmosphere; cm3 = cubic centimeter; g = gram; L = liter; m3 = cubic meter; mg = 
milligram; mol = mole; mPa = megapascal  
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Table I-2. Abbreviation and description of each quantum-derived chemical property. 

Parameter Abbreviation 
Used in Report Units  * Description 

Molecular 
Weight MolWt amu  The sum of the atomic weights of the atoms 

contained in a molecule. 
Energy of 
Highest 
Occupied 
Molecular 
Orbital 

EHOMO eV Energy of the highest occupied molecular orbital. 

Energy of Lowest 
Unoccupied 
Molecular 
Orbital 

ELUMO eV Energy of the lowest unoccupied molecular orbital. 

Energy of the 
Molecule EAU au  The energy of a hypothetical reaction that splits a 

molecule into its isolated nuclei and electrons. 

Electronegativity ElectNeg eV 

A chemical property that describes the tendency of 
an atom to attract electron density towards itself. 
Defined in terms of molecular orbital energies, i.e.,  
c = -(EHOMO+ELUMO)/2. 

Hardness Hardness eV 

In density functional theory, the hard/soft principle 
describes the resistance of the electron cloud 
(density) of an atom or molecule to deformation in 
an electric field, e.g. from the charge of an adjacent 
ion or the partial charge of a dipole. Like 
electronegativity, defined in terms of molecular 
orbital energies, i.e.,  
h = -(EHOMO-ELUMO)/2. 

Dipole Moment Dipole Debye 

A measure of the electron cloud distortion (resulting 
in a separation of positive and negative charge) due 
to the differences in the electronegativities of atoms 
in a molecule (designated by an arrow pointing 
toward the more electronegative side of the 
molecule). 

Number of 
Conformers Conformers  unitless 

The number of stereoisomers that can be 
interconverted by rotations about single bonds only, 
i.e., the number of conformational isomers per 
molecule. 
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Parameter Abbreviation 
Used in Report Units  * Description 

Polarizability Polarizability  10-30m3 

The ease of distortion of the electron cloud of a 
molecule by an electric field (e.g., due to the 
proximity of a charged or partially-charged reagent). 
The 1st principle method calculates polarizability as 
a second-order tensor (3x3 matrix), the diagonal 
elements of which vary in response to an applied 
electric field. The empirical method is derived from a 
regression equation containing molecular volume 
and hardness terms. 

Minimum/ 
Maximum 
Electrostatic 
Potential 

MinElPot         
MaxElPot kJ/mol 

An electrostatic potential is defined as the energy 
sensed by a point positive charge with respect to the 
nuclei and electrons of a molecule as a function of 
their location in the molecule. A surface for which 
the electrostatic potential is negative is indicative of 
a region of the molecule having stronger nucleophilic 
character. Conversely, a surface for which the 
electrostatic potential is positive is indicative of a 
region of the molecule having stronger electrophilic 
character. The maxima and minima represent the 
areas of a molecule having the highest nucleophilic 
and electrophilic character, respectively. 

Minimum Local 
Ionization 
Potential 

MinLocIonPot kJ/mol 

Reflects the relative ease of electron removal (i.e., 
ionization) at any location around a molecule. A 
surface of "low" local ionization potential demarks 
the areas that are most easily ionized. 

Total Polar 
Surface Area PSA Å² The surface area sum over all polar atoms—primarily 

oxygen and nitrogen—and their attached hydrogens. 

Polar Surface 
Area  

PolarArea75   
PolarArea100  
PolarArea125 

Å² 

The area in a molecule occupied by nitrogen and 
oxygen and any attached hydrogens, derived from 
the molecular electrostatic potential map. Values 
were calculated at three levels of electrostatic 
potential where 75 indicates values calculated at 75 
kJ/mol or below -75 kJ/mol, 100 indicates values 
calculated at 100 kJ/mol or below -100 kJ/mol, and 
125 indicates values calculated at 125 kJ/mol or 
below -125 kJ/mol. 

Accessible Polar 
Surface Area 

AccPolarArea75  
AccPolarArea100  
AccPolarArea125 

Å² 

Solvent-accessible polar regions on molecular 
surfaces. As for Polar Surface Area the values were 
calculated at 75 kJ/mol or below -75 kJ/mol, at 100 
kJ/mol or below -100 kJ/mol, and at 125 kJ/mol or 
below -125 kJ/mol. 
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Parameter Abbreviation 
Used in Report Units  * Description 

Surface 
Area/Surface 
Volume  

SurfArea       
SurfVolume Å² Surface area and volume derived from first principles 

using electron density surfaces. 

Accessible 
Surface Area AccSurfArea Å² Solvent-accessible regions on molecular surfaces.  

 

* Units:  Å²= angstrom; amu = atomic mass unit; au = atomic unit of energy; eV = electron-volt; kJ = kilojoule; mol = 
mole 
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Appendix II — Values for Empirical and Quantum-Derived Chemical 
Properties Used in the Analysis 

 

References for the Sources of Empirical Data are Included.  

Quantum Data were Calculated using Spartan ’20 Software. 

 

Table II-1. Empirical data and references……………………….………………………………….…….......…………….……….46 

Table II-2. Quantum data……………………………….……………………….…………….……….………….…………………………49 

References……………………………………………………………………………......……………………….…….…………………….….51
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Table II-1. Values for empirical data with associated reference sources (Ref) where group designation L indicates that the chemical was 
determined to be a leacher and designation NL indicates that the chemical was determined to be a non-leacher. The median value was used 
where multiple values for a chemical property were available. 

Chemical Grou
p 

Water 
Solubility 

(mg/L) 
Ref Soil Koc 

(cm3/g) Ref 

Lab 
Aerobic 
Half-life 
(Days) 

Ref Kow Ref 
Vapor 

Pressure 
(mPa) 

Ref 
Kh  

(atm 
m3/mol) 

Ref TFD 
(Days) Ref 

1,2-Dichloropropane 
(1,2-D) L 2700 Lewis et 

al. (2016) 50 Lewis et al. 
(2016) 140 Lewis et 

al. (2016) 105 Lewis et 
al. (2016) 1.94E+06 Lewis et 

al. (2016) 2.80E-03 Lewis et 
al. (2016) 700 USDA-ARS 

DB (2019) 
2,3,5,6-
Tetrachloroterephthalic 
acid (TPA) 

L 5780 Lewis et 
al. (2016) 38 Hammer and 

White (2009) 154 Lewis et 
al. (2016) 134.9 

Hammer 
and White 

(2009) 
6.52E-03 

Hammer 
and White 

(2009) 
6.58E-13 

Hammer 
and White 

(2009) 
552 DPR 

(1995) 

Aldicarb sulfone L 10000 Lewis et 
al. (2016) 10 Lewis et al. 

(2016) 21 Lewis et 
al. (2016) 0.269 Lewis et 

al. (2016) 1.20E+01 Lewis et 
al. (2016) 2.83E-11 Lewis et 

al. (2016) 20 Lewis et 
al. (2016) 

Atrazine L 32.5 Spurlock 
(2008) 86.5 Spurlock (2008) 146 Spurlock 

(2008) 449.5 Spurlock 
(2008) 3.07E-02 Spurlock 

(2008) 2.00E-09 Spurlock 
(2008) 85.9 Spurlock 

(2008) 

Bentazon L 530 DPR 
(2019) 72.5 DPR (2019) 31 DPR 

(2019) 0.595 DPR 
(2019) 1.70E-01 Lewis et 

al. (2016) 7.11E-10 Lewis et 
al. (2016) 21 U.S. EPA 

(1994) 

Bromacil L 700 Spurlock 
(2008) 14.1 Spurlock (2008) 344 Spurlock 

(2008) 75.9 Spurlock 
(2008) 4.13E-02 Spurlock 

(2008) 1.50E-10 Spurlock 
(2008) 146 Spurlock 

(2008) 

Deethylatrazine L 2700 Lewis et 
al. (2016) 110 Lewis et al. 

(2016) 170 Lewis et 
al. (2016) 32.4 Lewis et 

al. (2016) 1.24E+01 Lewis et 
al. (2016) 1.53E-09 Lewis et 

al. (2016) 45 Lewis et 
al. (2016) 

Deisopropylatrazine L 980 Lewis et 
al. (2016) 130 Lewis et al. 

(2016) 102.5 Lewis et 
al. (2016) 14.1 Lewis et 

al. (2016) 2.81E+01 Kruger 
(1992) 9.67E-03 Lewis et 

al. (2016) 36 Krutz et 
al. (2010) 

Dibromochloropropane 
(DBCP) L 1230 Lewis et 

al. (2016) 100 Lewis et al. 
(2016) 360 Lewis et 

al. (2016) 2690 Lewis et 
al. (2016) 1.00E+04 Lewis et 

al. (2016) 1.90E-05 Lewis et 
al. (2016) 203 USDA-ARS 

DB (2019) 

Diuron L 36.4 Spurlock 
(2008) 540.2 Spurlock (2008) 372 Spurlock 

(2008) 697.5 Spurlock 
(2008) 9.20E-03 Spurlock 

(2008) 5.10E-10 Spurlock 
(2008) 114.5 Spurlock 

(2008) 
Ethylene dibromide 
(EDB) L 4150 Lewis et 

al. (2016) 87 Lewis et al. 
(2016) 70 Lewis et 

al. (2016) 91.2 Lewis et 
al. (2016) 1.49E+06 Lewis et 

al. (2016) 6.47E-04 Lewis et 
al. (2016) 70 Cohen et 

al. (1983) 

Hexazinone L 33000 Spurlock 
(2008) 45.2 Spurlock (2008) 225.5 Spurlock 

(2008) 15 Spurlock 
(2008) 2.00E-02 Spurlock 

(2008) 1.10E-12 Spurlock 
(2008) 138.5 Spurlock 

(2008) 

Imidacloprid L 514 Spurlock 
(2008) 289 Spurlock (2008) 997 Spurlock 

(2008) 3.7 Spurlock 
(2008) 2.00E-04 Spurlock 

(2008) 2.00E-15 Spurlock 
(2008) 58.9 Spurlock 

(2008) 

Metolachlor ESA L 212461 Lewis et 
al. (2016) 9 Lewis et al. 

(2016) 132 Lewis et 
al. (2016) 0.0129 Lewis et 

al. (2016) 2.15E+01 Bayless et 
al. (2008) 7.21E-16 U.S. EPA 

(2012) 70 Bayless et 
al. (2008) 

Norflurazon L 33.7 Spurlock 
(2008) 460 Spurlock (2008) 130 Spurlock 

(2008) 280 Spurlock 
(2008) 3.87E-03 Spurlock 

(2008) 3.40E-10 Spurlock 
(2008) 180 Spurlock 

(2008) 

Prometon L 393.5 Spurlock 
(2008) 100 Spurlock (2008) 459 Spurlock 

(2008) 492 Spurlock 
(2008) 1.03E+00 Spurlock 

(2008) 3.20E-09 Spurlock 
(2008) 246.5 Spurlock 

(2008) 

Simazine L 6.2 Spurlock 
(2008) 151.7 Spurlock (2008) 110 Spurlock 

(2008) 122 Spurlock 
(2008) 2.93E-03 Spurlock 

(2008) 5.40E-10 Spurlock 
(2008) 83.5 Spurlock 

(2008) 

Tebuthiuron L 2600 Spurlock 
(2008) 79.8 Spurlock (2008) 1220 Spurlock 

(2008) 63 Spurlock 
(2008) 3.47E-01 Spurlock 

(2008) 3.00E-10 Spurlock 
(2008) 690.5 Spurlock 

(2008) 
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Chemical Grou
p 

Water 
Solubility 

(mg/L) 
Ref Soil Koc 

(cm3/g) Ref 

Lab 
Aerobic 
Half-life 
(Days) 

Ref Kow Ref 
Vapor 

Pressure 
(mPa) 

Ref 
Kh  

(atm 
m3/mol) 

Ref TFD 
(Days) Ref 

1,3-Dicloropropene NL 2250 Spurlock 
(2008) 66 Spurlock (2008) 32.7 Spurlock 

(2008) 105.5 Spurlock 
(2008) 3.33E+06 Spurlock 

(2008) 1.60E-03 Spurlock 
(2008) 51.6 Spurlock 

(2008) 

Alachlor NL 240 Spurlock 
(2008) 127.5 Spurlock (2008) 15 Spurlock 

(2008) 1220 Spurlock 
(2008) 1.87E+00 Spurlock 

(2008) 2.50E-08 Spurlock 
(2008) 13.2 Spurlock 

(2008) 

Carbaryl NL 113 Spurlock 
(2008) 426.4 Spurlock (2008) 5.5 Spurlock 

(2008) 70.8 Spurlock 
(2008) 1.60E-01 Spurlock 

(2008) 2.70E-09 Spurlock 
(2008) 9.5 Spurlock 

(2008) 

Chlorthal-dimethyl NL 0.5 Spurlock 
(2008) 2565 Spurlock (2008) 25.8 Spurlock 

(2008) 199526 Spurlock 
(2008) 3.33E-01 Spurlock 

(2008) 2.20E-06 Spurlock 
(2008) 21.4 Spurlock 

(2008) 

Carbofuran NL 351 Spurlock 
(2008) 25.7 Spurlock (2008) 22.1 Spurlock 

(2008) 45.7 Spurlock 
(2008) 3.20E-02 Spurlock 

(2008) 5.10E-09 Spurlock 
(2008) 30.4 Spurlock 

(2008) 

Cyanazine NL 155 Spurlock 
(2008) 236.8 Spurlock (2008) 15.4 Spurlock 

(2008) 127 Spurlock 
(2008) 2.13E-04 Spurlock 

(2008) 6.60E-11 Spurlock 
(2008) 37.5 Spurlock 

(2008) 

Dimethoate NL 39800 Spurlock 
(2008) 10 Spurlock (2008) 2.4 Spurlock 

(2008) 5.1 Spurlock 
(2008) 2.40E-01 Spurlock 

(2008) 1.40E-11 Spurlock 
(2008) 7.8 Spurlock 

(2008) 

Disulfoton NL 1.2 DPR 
(2019) 490.4 

DPR (2019); Rao 
and Davidson 

(1982) 
15.6 DPR 

(2019) 8910 DPR 
(2019) 7.199408 DPR 

(2019) 1.60E-06 DPR 
(2019) 2.9 DPR 

(2019) 

Ethoprop NL 843 Spurlock 
(2008) 183.5 Spurlock (2008) 34.1 Spurlock 

(2008) 3890 Spurlock 
(2008) 50.662501 Spurlock 

(2008) 1.40E-09 Spurlock 
(2008) 23.3 Spurlock 

(2008) 

Fenamiphos NL 329 Spurlock 
(2008) 224.3 Spurlock (2008) 24.2 Spurlock 

(2008) 1635 Spurlock 
(2008) 3.1997369 Spurlock 

(2008) 3.40E-08 Spurlock 
(2008) 10 Spurlock 

(2008) 

Fonofos  NL 16.9 Spurlock 
(2008) 894.3 Spurlock (2008) 62.8 Spurlock 

(2008) 8700 Spurlock 
(2008) 35.99704 Spurlock 

(2008) 6.50E-06 Spurlock 
(2008) 22.4 Spurlock 

(2008) 

Iprodione NL 12.2 DPR 
(2019) 700 Lewis et al. 

(2016) 56 DPR 
(2019) 1300 DPR 

(2019) 0.0133322 DPR 
(2019) 3.56E-09 DPR 

(2019) 83.9 DPR 
(2019) 

Linuron NL 77.2 Spurlock 
(2008) 653 

DPR (2019); 
Hance (1973); 

Jury et al. (1987); 
Kookana et.al.   

(1990); Rao and 
Davidson (1982); 

Sanchez-
Camazona et al. 

(2000) 

48.9 Spurlock 
(2008) 1020 Spurlock 

(2008) 0.1866513 Spurlock 
(2008) 5.80E-09 Spurlock 

(2008) 65.9 Spurlock 
(2008) 

Methomyl  NL 57900 Spurlock 
(2008) 40 Spurlock (2008) 46.2 Spurlock 

(2008) 1.2 Spurlock 
(2008) 6.5327961 Spurlock 

(2008) 1.90E-10 Spurlock 
(2008) 29.8 Spurlock 

(2008) 

Methyl bromide NL 17500 Spurlock 
(2008) 126.5 Spurlock (2008) 9.6 Spurlock 

(2008) 51.5 Spurlock 
(2008) 239.98027 Spurlock 

(2008) 1.60E-02 Spurlock 
(2008) 3.8 Spurlock 

(2008) 

Napropamide NL 74 Spurlock 
(2008) 667.9 Spurlock (2008) 455 Spurlock 

(2008) 2100 Spurlock 
(2008) 0.0226648 Spurlock 

(2008) 8.10E-10 Spurlock 
(2008) 10 Spurlock 

(2008) 

Oryzalin NL 2.6 Spurlock 
(2008) 886.7 Spurlock (2008) 63.3 Spurlock 

(2008) 5420 Spurlock 
(2008) 0.0013332 Spurlock 

(2008) 1.70E-09 Spurlock 
(2008) 121 Spurlock 

(2008) 
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Chemical Grou
p 

Water 
Solubility 

(mg/L) 
Ref Soil Koc 

(cm3/g) Ref 

Lab 
Aerobic 
Half-life 
(Days) 

Ref Kow Ref 
Vapor 

Pressure 
(mPa) 

Ref 
Kh  

(atm 
m3/mol) 

Ref TFD 
(Days) Ref 

Oxamyl  NL 280000 Spurlock 
(2008) 31.6 Spurlock (2008) 10.7 Spurlock 

(2008) 0.4 Spurlock 
(2008) 30.664145 Spurlock 

(2008) 2.40E-10 Spurlock 
(2008) 9 Spurlock 

(2008) 

Oxyfluorfen NL 0.1 Spurlock 
(2008) 6601.4 Spurlock (2008) 291 Spurlock 

(2008) 29400 Spurlock 
(2008) 0.0333306 Spurlock 

(2008) 1.00E-06 Spurlock 
(2008) 175 Spurlock 

(2008) 

Pendimethalin NL 0.3 Spurlock 
(2008) 15000 Spurlock (2008) 126 U.S. EPA 

(1997) 152000 Spurlock 
(2008) 1.2532303 Spurlock 

(2008) 1.30E-08 Spurlock 
(2008) 42 Spurlock 

(2008) 

Phorate NL 29 Spurlock 
(2008) 538.4 Spurlock (2008) 3 Spurlock 

(2008) 8390 Spurlock 
(2008) 85.326317 Spurlock 

(2008) 7.60E-03 Spurlock 
(2008) 1.8 Spurlock 

(2008) 

Propyzamide NL 12.9 Spurlock 
(2008) 825 Spurlock (2008) 26.3 DPR 

(2019) 1565 Spurlock 
(2008) 0.0573286 Spurlock 

(2008) 9.80E-09 Spurlock 
(2008) 53.5 Spurlock 

(2008) 

Thiobencarb NL 27.5 Spurlock 
(2008) 594.7 Spurlock (2008) 37 Spurlock 

(2008) 29.3 Spurlock 
(2008) 2.9330921 Spurlock 

(2008) 2.70E-07 Spurlock 
(2008) 27.8 Spurlock 

(2008) 

Trifluralin NL 0.3 Spurlock 
(2008) 3532.5 Spurlock (2008) 189 Spurlock 

(2008) 118000 Spurlock 
(2008) 13.332237 Spurlock 

(2008) 6.10E-04 Spurlock 
(2008) 114.5 Spurlock 

(2008) 
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Table II-2. Values for quantum data where group designation L indicates that the chemical was determined to be a leacher and designation 
NL indicates that the chemical was determined to be a non-leacher. 

Chemical Group MolWt EHOMO ELUMO ElectNeg Hardness EAU Dipole Conformers SurfArea SurfVolume AccSurfArea 
1,2-Dichloropropane (1,2-D) L 112.987 -10.4 2.07 4.164452 6.237235 -1038.268 0.65 3 125.2822 107.379 93.23 
2,3,5,6-Tetrachloroterephthalic acid (TPA) L 303.912 -9.27 0.13 4.571684 4.699785 -2447.476 0 4 232.8273 225.7189 162.74 
Aldicarb sulfone L 222.265 -9.31 0.96 4.176442 5.137934 -1083.446 6.61 54 229.0382 219.0886 154.86 
Atrazine L 215.688 -8.52 1.48 3.52198 4.998614 -1047.089 5.19 36 240.9175 222.0137 172.99 
Bentazon L 240.283 -8.73 0.21 4.259494 4.472007 -1121.365 4.49 24 228.6703 226.1664 161.5 
Bromacil L 261.119 -8.47 0.71 3.880076 4.585735 -3184.519 5.33 18 226.9503 220.3634 158.18 
Deethylatrazine L 187.634 -8.59 1.44 3.578858 5.014392 -968.4861 5.21 6 200.753 183.2629 149.47 
Deisopropylatrazine L 173.607 -8.61 1.44 3.586809 5.027262 -929.1784 5.28 6 184.1979 163.9341 141.88 
Dibromochloropropane (DBCP) L 236.334 -10.09 0.89 4.598338 5.489058 -5725.316 1.88 9 149.7239 136.8289 109.82 
Diuron L 233.098 -7.97 1.41 3.28009 4.686691 -1453.914 7.27 4 228.9071 216.2525 177.53 
Ethylene dibromide (EDB) L 187.862 -10.01 1.15 4.43026 5.57887 -5226.434 0 3 119.5127 99.97471 94.83 
Hexazinone L 252.318 -8.75 1.37 3.691024 5.063135 -838.5889 7.05 12 268.0428 268.6809 177.22 
Imidacloprid L 255.665 -9.06 0.52 4.270251 4.792077 -1233.01 8.12 18 245.5336 233.1247 183.24 
Metolachlor ESA L 329.417 -8.9 1.09 3.905705 4.997346 -1414.146 8.94 5832 310.9803 338.7759 197.08 
Norflurazon L 303.671 -8.15 0.07 4.037543 4.111077 -1461.561 7.59 4 266.2571 256.9084 195.22 
Prometon L 225.296 -8.08 2.38 2.850596 5.23276 -741.3193 3.18 72 267.881 251.5868 185.71 
Simazine L 201.661 -8.54 1.48 3.527289 5.009324 -1007.781 5.26 36 224.2235 202.6566 165.82 
Tebuthiuron L 228.32 -8.37 1.17 3.601704 4.770344 -1044.807 4.42 8 246.6778 239.8559 179.62 
1,3-Dicloropropene NL 110.971 -9.38 1.23 4.074967 5.302176 -1037.024 2.3 3 123.1526 100.5901 99.62 
Alachlor NL 269.772 -8.6 1.49 3.557665 5.046947 -1210.692 4.55 432 280.6873 292.0321 180.13 
Carbaryl NL 201.225 -7.61 0.84 3.383257 4.22423 -668.9088 3.14 4 220.7113 207.6871 174.54 
Carbofuran NL 221.256 -7.61 2.02 2.796716 4.813376 -746.5281 2.15 8 244.8915 232.7333 169.94 
Chlorthal-dimethyl NL 331.966 -9.16 0.29 4.434514 4.720683 -2526.065 0 4 274.0232 264.7568 189.2 
Cyanazine NL 240.698 -8.69 1.28 3.705218 4.982284 -1139.289 5.12 36 255.9952 241.7336 177.9 
Dimethoate NL 229.261 -8.71 1.4 3.654853 5.050165 -1615.781 1.77 486 216.9186 217.5841 149.65 
Disulfoton NL 274.41 -8.26 2.18 3.039173 5.22017 -2002.527 6.06 19683 280.1453 284.7407 181.32 
Ethoprop NL 242.344 -8.85 1.89 3.483636 5.370101 -1604.359 0.38 6561 278.8376 260.2836 177.93 
Fenamiphos NL 303.363 -8.14 1.55 3.29774 4.846589 -1528.413 3.74 972 349.77 307.5 219.3313 
Fonofos  NL 246.335 -8.24 1.1 3.57099 4.668583 -1602.911 2.64 81 260.5236 256.7886 179.92 
Iprodione NL 330.171 -9.13 0.63 4.246641 4.880533 -1813.304 2.87 12 309.7647 299.4441 221.23 
Linuron NL 249.10 -8.07 1.31 3.37853 4.690964 -1529.056 6.42 72 240.8577 226.5673 182 
Methomyl  NL 162.213 -8.16 1.99 3.086866 5.073062 -854.4956 4.1 18 188.9408 165.2837 143.47 
Methyl bromide NL 94.939 -9.74 2.09 3.823914 5.915406 -2613.814 2.31 1 76.18852 56.59675 68.76 
Napropamide NL 271.36 -7.46 0.9 3.28083 4.183127 -865.4086 4.1 324 297.5041 303.727 209.3 
Oryzalin NL 346.364 -8.55 -1.01 4.780038 3.76906 -1536.01 3.65 972 319.3905 329.0067 197.98 
Oxamyl  NL 219.265 -8.44 1.18 3.631618 4.809358 -1062.428 3.55 36 246.1277 209.2071 168.2895 
Oxyfluorfen NL 361.703 -8.6 -0.05 4.324424 4.274865 -1693.087 6.9 24 318.9478 308.0492 216.17 
Pendimethalin NL 281.312 -8.27 -0.72 4.496152 3.773952 -971.4962 4.67 108 287.7683 293.7902 188.43 
Phorate NL 260.383 -8.31 1.59 3.361817 4.952663 -1963.221 2.88 6561 272.4863 265.6514 179.03 
Propyzamide NL 256.132 -9.1 0.36 4.370265 4.726335 -1513.992 4.12 6 259.4479 247.4607 189.99 
Thiobencarb NL 257.785 -8.55 1.31 3.617862 4.932611 -1455.08 4.16 162 278.3089 267.8525 196.99 
Trifluralin NL 335.282 -8.55 -1 4.77713 3.774081 -1269.116 0.61 81 302.1828 308.4823 182.82 



50 

 

Table II-2. Continued. 
Chemical Group MinElPot MinLoc 

IonPot PSA Polar 
Area75 

AccPolar 
Area75 

Polar 
Area100 

AccPolar 
Area100 

Polar 
Area125 

AccPolar 
Area125 MaxElPot Polarizability 

1,2-Dichloropropane (1,2-D) L -66.11 50.14 0 15.05 13.28 1.99 1.97 0 0 109.51 46.39 
2,3,5,6-Tetrachloroterephthalic acid (TPA) L -141.72 53.95 68.935 45.55 38.86 33.46 30.48 20.76 18.65 306.21 56.01 
Aldicarb sulfone L -189.84 50.57 74.417 85.83 61.62 53.94 40.66 42.16 35.41 235.59 55.85 
Atrazine L -178.04 45.73 41.935 62.1 40.86 34.03 19.34 17.12 7.95 197.06 56.02 
Bentazon L -148.23 50.03 62.048 71.16 52.94 50.83 41.08 27.58 22.74 280.61 57.07 
Bromacil L -201 46.33 37.313 65.77 46.79 46.96 32.29 32.79 22.82 273.91 56.32 
Deethylatrazine L -177.85 46.12 56.781 66.13 49.83 39.33 28.19 22.74 16.3 223.64 52.85 
Deisopropylatrazine L -178.35 46.12 57.011 68.86 53.1 41.02 30.07 23.8 17.27 220.68 51.35 
Dibromochloropropane (DBCP) L -93.18 47.01 0 33.51 23.38 16.03 13.18 2.64 2.18 138.27 48.59 
Diuron L -170.11 48.6 20.857 74.97 52.51 40.7 27.95 22.28 14.88 254.62 56.08 
Ethylene dibromide (EDB) L -55.54 46.59 0 23.55 19.54 7.74 7.74 0 0 116.1 45.93 
Hexazinone L -228.96 46.02 34.593 83.58 58.41 46.53 33 28.96 21.42 131.25 60.08 
Imidacloprid L -192.02 46.8 66.502 126.97 94.7 96.33 73.02 62.02 48.76 204.04 57.11 
Metolachlor ESA L -190.66 49.45 68.251 96.62 64.39 49.22 35.17 34.03 26.57 138.77 65.36 
Norflurazon L -212.86 50.09 32.008 75.57 55.21 51.2 35.81 26.76 17.51 230 60 
Prometon L -218.81 43.56 47.601 48.29 29.35 32.27 21.22 20.48 14.82 177.45 58.49 
Simazine L -179.23 45.73 42.155 64.41 43.82 35.69 21.27 18.21 9.14 196.96 54.52 
Tebuthiuron L -197.23 46.83 38.957 39.57 29.51 25.51 19.79 18.16 14.63 97.96 57.56 
1,3-Dicloropropene NL -83.82 49.59 0 30.48 25.43 13.48 11.13 3.92 2.76 145.07 46.48 
Alachlor NL -197.08 48.14 19.855 48.29 34.32 22.18 14.37 14.49 10.91 91.38 61.93 
Carbaryl NL -203.45 46.75 30.436 51.73 40.84 23.65 16.83 18.09 13.65 219.6 56.46 
Carbofuran NL -209.87 46.53 38.694 57.24 33.79 34.24 17.66 23.91 12.88 199.5 57.73 
Chlorthal-dimethyl NL -152.82 53.52 42.199 59.47 52.23 25.88 23.56 13.91 13.91 112.38 59.28 
Cyanazine NL -181.25 46.94 55.364 98.76 71.25 52.32 36.4 26.69 19.65 227.18 57.54 
Dimethoate NL -187.59 41.62 39.448 67.79 53.32 29.28 21.88 13.64 10.92 134.63 55.24 
Disulfoton NL -156.27 39.63 12.731 68.51 49.04 31.24 25.16 11.29 10.75 109.71 60.03 
Ethoprop NL -189.16 42.5 24.738 36.4 23.47 21.25 13.59 13.47 9.77 76.82 58.41 
Fenamiphos NL -206.55 39.49 43.689 49.51 29.01 26.47 17.7 17.35 12.44 201.18 64.03 
Fonofos  NL -154.58 40 7.33 47.81 32.55 24.77 16.14 10.83 7.78 91.83 58.92 
Iprodione NL -163.74 51.58 48.769 72.09 54.74 41.58 34.64 15.38 13.34 148.97 62.49 
Linuron NL -159.79 48.95 29.428 68.13 49.03 31.76 22.01 13.74 9.51 226.19 56.89 
Methomyl  NL -251.51 41.87 40.183 46.83 33.6 28.57 18.43 23.89 16.28 216.63 51.74 
Methyl bromide NL -80.11 45.09 0 22.05 22.05 3.09 3.09 0 0 108.72 42.78 
Napropamide NL -199.95 46.29 17.86 40.44 26.78 15.48 9.47 12.66 8.56 105.86 63.95 
Oryzalin NL -134.58 50.78 135.485 88.78 68.3 50.82 41.14 20.97 17.29 264.53 64.61 
Oxamyl  NL -224.187 42.46207 54.539 70.48 48.72 41.36 28.58 33.62 25.02 210.5 56.08 
Oxyfluorfen NL -179.81 49.47 50.343 89.23 61.47 54.45 39.29 30.56 23.85 148.77 63.97 
Pendimethalin NL -143.74 47.86 81.147 74.35 54.56 32.4 22.88 6.54 5.5 117.81 62.39 
Phorate NL -125.42 40.23 15.669 47.64 37.15 13.21 11.46 0.01 0.01 94.24 58.71 
Propyzamide NL -169.18 47.58 21.584 35.5 23.98 25.86 18.36 17.18 12.6 218.85 58.85 
Thiobencarb NL -173.33 42.02 13.609 34.1 24.47 12.6 8.46 9.92 7.54 97.38 59.99 
Trifluralin NL -119.02 53.23 74.177 51.5 33.16 22.7 14.39 6.51 3.66 156.33 63.68 
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Table III-1. Q-Q plots of raw data for leacher and non-leacher chemical groups for ELUMO property. 
Shapiro-Wilk P-value at 0.48 for leacher and 0.02 for non-leacher group. 

Leacher 

Non-Leacher 



55 

 

Table III-2. Q-Q plots of raw data for leacher and non-leacher chemical groups for Polarizability 
property. Shapiro-Wilk P-value at 0.25 for leacher and 0.004 for non-leacher group. 

Leacher 

 

Non-Leacher 

 



56 

 

Table III-3. Q-Q plots of raw data for leacher and non-leacher chemical groups for SurfArea property. 
Shapiro-Wilk P-value at 0.10 for leacher and 0.006 for non-leacher group. 

Leacher 

 

Non-Leacher 
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Table III-4. Q-Q plots of raw data for leacher and non-leacher chemical groups for SurfVolume 
property. Shapiro-Wilk P-value at 0.27 for leacher and 0.004 for non-leacher group. 
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Non-Leacher 
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Table III-5. Q-Q plots of raw data for leacher and non-leacher chemical groups for MinElPot property. 
Shapiro-Wilk P-value at 0.009 for leacher and 0.82 for non-leacher group. 

Leacher 

Non-Leacher 
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Table III-6. Q-Q plots of raw data for leacher and non-leacher chemical groups for AccPolarArea75 
property. Shapiro-Wilk P-value at 0.49 for leacher and 0.07 for non-leacher group. 

Leacher 

Non-Leacher 
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Table III-7. Q-Q plots between raw data for leacher and non-leacher chemical groups for EAU property. 
Shapiro-Wilk P-value at 0.001 for leacher and 0.27 for non-leacher group. 

Leacher 
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Table III-8. Q-Q plots of data for leacher and non-leacher chemical groups for LogConformers property. 
Shapiro-Wilk P-value at 0.001 for leacher and 0.64 for non-leacher group. 

Leacher 

Non-Leacher 
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Table III-9. Q-Q plots of raw data for leacher and non-leacher chemical groups for PSA property. 
Shapiro-Wilk value P-value at 0.10 for leacher and 0.007 for non-leacher group. 

Leacher 

Non-Leacher 
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Appendix IV — Expanded Results and Statistics for the Full 11-Parameter 
Model and Subsequent Reduced-Parameter Models 
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Table IV-1. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the full 11-parameter 
canonical discriminant analysis model. Box plots indicate the mean, median, interquartile range, and 
minimum and maximum MLVs of each chemical group. Numerical statistics indicate standardized and 
raw canonical coefficients. An asterisk (*) denotes the smallest absolute standardized coefficient 
identified in the model to be removed during the next model-parameter reduction process. 

 
11-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9331 -1.2561 
LogAero 1.2815 2.0045 
LogKh 0.2201 0.0690 
PolarArea100 0.0635 0.0037 
Dipole 0.4254 0.1842 
EHOMO -0.4040 -0.6320 
LogMaxElPot 0.3781 2.3066 
MinLocIonPot 0.0709 0.0189 
Hardness 0.0755 0.1475 
SurfArea -0.1664 -0.0028 
LogConformers* 0.0257 0.02446 
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Table IV-2. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the ten-parameter 
canonical discriminant analysis model. Box plots indicate the mean, median, interquartile range, and 
minimum and maximum MLVs of each chemical group. Numerical statistics indicate standardized and 
raw canonical coefficients. An asterisk (*) denotes the smallest absolute standardized coefficient 
identified in the model to be removed during the next model-parameter reduction process. 

 
Ten-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9410 -1.2669 
LogAero 1.2767 1.9971 
LogKh 0.2226 0.0698 
PolarArea100* 0.0611 0.0035 
Dipole 0.4299 0.1862 
EHOMO -0.4104 -0.6419 
LogMaxElPot 0.3718 2.2687 
MinLocIonPot 0.0618 0.0164 
Hardness 0.0709 0.1385 
SurfArea -0.1463 -0.0025 
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Table IV-3. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the nine-parameter 
canonical discriminant analysis model. Box plots indicate the mean, median, interquartile range, and 
minimum and maximum MLVs of each chemical group. Numerical statistics indicate standardized and 
raw canonical coefficients. An asterisk (*) denotes the smallest absolute standardized coefficient 
identified in the model to be removed during the next model-parameter reduction process. 

 
Nine-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9360 -1.2600 
LogAero 1.2789 2.0004 
LogKh 0.2014 0.0631 
Dipole 0.4547 0.1969 
EHOMO -0.4327 -0.6768 
LogMaxElPot 0.3934 2.4004 
MinLocIonPot* 0.0553 0.0147 
Hardness 0.0600 0.1171 
SurfArea -0.1359 -0.0023 
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Table IV-4. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the eight-parameter 
CDA model. Box plots indicate the mean, median, interquartile range, and minimum and maximum 
MLVs of each chemical group. Numerical statistics indicate standardized and raw canonical 
coefficients. An asterisk (*) denotes the smallest absolute standardized coefficient identified in model 
to be removed during the next model-parameter reduction process. 

 
Eight-Parameter Model   
Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9347 -1.2583 
LogAero 1.2881 2.0149 
LogKh 0.1984 0.0622 
Dipole 0.4509 0.1953 
EHOMO -0.4726 -0.7392 
LogMaxElPot 0.4057 2.4754 
Hardness* 0.0240 0.0469 
SurfArea -0.1385 -0.0024 
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Table IV-5. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the seven-parameter 
CDA model. Box plots indicate the mean, median, interquartile range, and minimum and maximum 
MLVs of each chemical group. Numerical statistics indicate standardized and raw canonical 
coefficients. An asterisk (*) denotes the smallest absolute standardized coefficient identified in model 
to be removed during the next model-parameter reduction process. 

 
Seven-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9465 -1.2742 
LogAero 1.2864 2.0123 
LogKh 0.2026 0.0635 
Dipole 0.4545 0.1968 
EHOMO -0.4800 -0.7508 
LogMaxElPot 0.3975 2.4254 
SurfArea* -0.1441 -0.0025 



69 

 

Table IV-6. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the six-parameter CDA 
model. Box plots indicate the mean, median, interquartile range, and minimum and maximum MLVs of 
each chemical group. Numerical statistics indicate standardized and raw canonical coefficients. An 
asterisk (*) denotes the smallest absolute standardized coefficient identified in model to be removed 
during the next model-parameter reduction process. 

 
Six-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -1.0168 -1.3688 
LogAero 1.2962 2.0276 
LogKh* 0.2854 0.0894 
Dipole 0.4563 0.1976 
EHOMO -0.5246 -0.8206 
LogMaxElPot 0.4223 2.5767 
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Table IV-7. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the five-parameter CDA 
model. Box plots indicate the mean, median, interquartile range, and minimum and maximum MLVs of 
each chemical group. Numerical statistics indicate standardized and raw canonical coefficients. An 
asterisk (*) denotes the smallest absolute standardized coefficient identified in model to be removed 
during the next model-parameter reduction process. 

 
Five-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9060 -1.2197 
LogAero 1.2370 1.9349 
Dipole* 0.3607 0.1562 
EHOMO -0.5843 -0.9140 
LogMaxElPot 0.3725 2.2728 
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Table IV-8. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the four-parameter CDA 
model. Box plots indicate the mean, median, interquartile range, and minimum and maximum MLVs of 
each chemical group. Numerical statistics indicate standardized and raw canonical coefficients. An 
asterisk (*) denotes the smallest absolute standardized coefficient identified in model to be removed 
during the next model-parameter reduction process. 

 
Four-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -0.9186 -1.2366 
LogAero 1.3138 2.0551 
EHOMO -0.4531 -0.7087 
LogMaxElPot* 0.4375 2.6691 
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Table IV-9. Distributions of multivariate leaching values (MLVs) with associated fits of the normal and 
kernel distribution for the leacher (L) and non-leacher (NL) chemical groups of the three-parameter 
CDA model. Box plots indicate the mean, median, interquartile range, and minimum and maximum 
MLVs of each chemical group. Numerical statistics indicate standardized and raw canonical 
coefficients.  

 
Three-Parameter Model   

Variable Standardized Canonical Coefficients Raw Canonical Coefficients 
LogKoc -1.0137 -1.3647 
LogAero 1.3374 2.0920 
EHOMO -0.3343 -0.5229 
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Appendix V — Theoretical Basis for Relating Quantum Variables to Reflect 
the Relative Potential of a Chemical’s Soil Mobility  

Overview 

When pesticides enter the soil environment, their persistence and mobility depend strongly on the 
physicochemical properties of the pesticide. Biotic (microbial) and abiotic (chemical hydrolysis, 
photolysis, etc.) degradation, solubility, sorption, and volatility are all major property-based 
mechanisms which contribute significantly to their overall residence times and leaching potential (Pal 
et al., 2006). If a pesticide is soluble and chemically stable it may move with water percolating 
downward through the soil, eventually reaching groundwater. If, however, the pesticide is insoluble 
and/or tightly bound to soil particles, then it is more likely to be retained in the upper soil layers and 
small amounts may be lost to surface waters through runoff or erosion. The physicochemical 
properties of pesticides that affect mobility are significant contributors to their leaching potential in 
the soil. Sorption to soil minerals (clay minerals, iron oxides, etc.), humic substances, and organic 
matter impedes pesticide movement in the soil and increases the time available for degradation by 
microorganisms (Kah et al., 2007). If a pesticide is not degraded, volatilized, or retained by the solid 
phase (solid soil particles having varied composition and sizes) or suspended soil components, it will 
likely be mobile and a potential groundwater contaminant. In California, the leaching potential of new 
pesticide active ingredients is evaluated by the California Department of Pesticide Regulation (DPR) 
prior to registration. To better appraise the leaching risks associated with pesticides, a leaching model 
has been developed based on the notion that (1) the physicochemical properties of pesticides largely 
determine their mobility and persistence in soil, (2) their molecular structure must encode the features 
responsible for these properties, and (3) it is possible to represent these features mathematically: 

 Leaching = f (Structure) (1) 

Equation 1 represents the central axiom of Quantitative Structure-Activity Relationship (QSAR) 
modeling, which asserts that the physical and chemical properties of molecules are a function of their 
molecular structures (Organization for Economic Cooperation and Development, 2013). However, 
while QSAR formalism was utilized in this current modeling effort, the objective was not to develop a 
classical QSAR model in which structural descriptors (i.e., independent or predictor variables) are 
utilized to directly estimate a particular endpoint (e.g., toxicity or half-life). Rather, this work was 
directed toward generating a binary classification model for discriminating between pesticides that 
have a propensity to leach to groundwater and those that do not. Such a model has the form:  

 Φ = f (α1χ1, α2 χ2, α3 χ3… αnχn) (2) 

where χn are descriptors representing particular properties, obtained empirically or calculated from 
the electronic wave function of the molecule, and αn are coefficients acquired from Canonical 
Discriminant Analysis (CDA). The discriminant function Φ is a chemical-specific value derived from the 
application of the CDA coefficients. It was anticipated that leaching and non-leaching chemicals might 
be classified based on a combination of quantum chemical properties derived from their molecular 
wave functions and experimentally-measured empirical properties. Quantum chemical properties were 
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particularly of interest as, unlike experimentally-measured quantities, there is no inherent 
measurement error associated with such calculations (Karelson et al., 1996). Quantum chemical 
descriptors include such properties as molecular surface areas, orbital energies, electrostatic charges, 
electron densities, dipole moments, and ionization potentials which were calculated using Spartan 
computational software (Hehre and Ohlinger, 2016).  

QSAR property calculations were conducted for each of the 42 chemicals used for model development. 
Each chemical's molecular structure was represented as a PubChem .sdx file and subsequently 
imported into the Spartan program for computational analysis. An initial pool of 42 topological, 22 
quantum chemical, and 7 empirical chemical properties were considered for the development of a 
leaching classification model. Topological, QSAR, and empirical properties with raw or transformed 
values which did not reflect normal distributions, generally because they generated constant or zero 
values or were overtly extraneous were removed. For each of the remaining chemical properties, 
Student’s t-tests performed between the leacher and non-leacher chemical groups that failed to 
produce a significant result, indicating no potential for CDA discrimination, were also removed. Finally, 
Pearson correlation analysis was employed on the remaining chemical properties to identify groups of 
highly correlated properties (i.e., r > 70%). One representative property within each correlated group 
was retained for CDA while the remaining properties were considered redundant and removed. 
Statistical discrimination between the model development set of known leacher and non-leacher 
chemicals (42 in total) was subsequently conducted using CDA. In CDA, a multivariate analysis of 
variance was conducted to determine if the retained chemical properties resulted in a statistically 
significant separation of the leacher and non-leacher groups. QSAR and empirical properties in the 
initial model were those that indicated distribution normality, potential for discrimination between 
leacher and non-leacher chemicals as indicated by the t-test, and that were not highly correlated with 
one another. The initial 11 chemical properties selected for the first CDA analysis provided a model 
with a low misclassification rate of approximately 5%. From the initial 11-parameter model, chemical 
properties were sequentially removed from the analysis whereby the property with the lowest 
absolute standardized coefficient was omitted. This procedure generated a definitive five-variable 
model having a misclassification rate also of 4.8%. The model was validated using leave-one-out (LOO) 
and leave-pair-out (LPO) cross-validation methodologies. The overall misclassification rate from this 
procedure was the same as for the full 11-parameter model. The five-parameter model included two 
empirical and three quantum chemical properties. An endpoint value or Multivariate Leaching Value 
(MLV) was calculated for each member of the model development set of chemicals from application of 
raw canonical coefficients (α1, α2, α3, …n) to the chemical properties (X1, X2, X3, ...Xn) according to 
Equation 2:  

MLV =  1.9349 (Log soil aerobic half-life) – 1.2197 (Log KOC) + 0.1562 (dipole moment) 
– 0.9140 (EHOMO) + 2.2728 (Log MaxElPot)  

(3) 

Applying Equation 3, an MLV for a new chemical with unknown leaching potential can be generated. 
The lower prediction limit at the 95 percent confidence level of the distribution of MLV scores for the 
leacher group of chemicals was used to establish a Multivariate Leaching Threshold (MLT) value of 
14.4706. If the resulting MLV is equal to or above the MLT (14.4706), it is assigned membership into 
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the leacher group of chemicals, otherwise the chemical is designated a member of the non-leacher 
group [i.e., leacher if MLV ≥ MLT (14.4706), otherwise non-leacher].  

I. Leaching: A Chemistry Perspective 
Intermolecular Forces 

The physicochemical mechanisms that drive molecules to leach are the manifestation of the forces that 
act between them, i.e., they are a result of the interplay between various intramolecular and 
intermolecular forces (Figure V-1). These forces govern how molecules interact with their environment 
and each other and are inexorably associated. These are real forces that can be substantiated and 
enumerated experimentally and computationally. That the intermolecular forces are the fundamental 
source of the mechanisms that mediate leaching may not be immediately apparent, as such forces are 
generally imperceptible. However, the physicochemical properties that propagate from them, such as 
solubility or volatility, are conspicuous and familiar. Understanding and appreciating the role that these 
forces play in the leaching process requires that they be examined at the molecular level. 

The electron density surface of a molecule is the outermost boundary that the molecule occupies in 
space. It defines its shape, volume, and size, but equally important it encapsulates all the physical and 
chemical characteristics that makes it a distinctive structure. All bonding and nonbonding interactions 
occur with the valence (outer shell) electrons at these outlying surface regions. The valence electrons 
in atoms can be envisioned using atomic orbital diagrams, as shown below for carbon, oxygen, and 
chlorine:  

 
 

In molecules, valence electrons are not confined to the vicinity of one or two atomic nuclei, but are 
delocalized (i.e., spread over the entire molecule). Chemical (bonding) interactions originate from 
regional reaction centers having distinct structural characteristics (e.g., partial charges, lone electron 
pairs, conjugation, etc.), but the comparatively weak interactions that are the source of the physical 
(nonbonding) properties of molecules may emanate either locally (e.g., dipole-dipole interactions such 
as hydrogen-bonding at a donor/acceptor site) or globally (e.g., dispersion interactions anywhere on 
the molecular surface). Intramolecular forces, the strong internal forces that act within a molecule to 
hold it together, are characterized by three types of bonds: covalent, ionic, and metallic (Figure V-2). 
Covalent bonds are those in which a pair, or pairs, of electrons is shared by two atoms. Ionic bonds are 
formed as a result of the electrostatic attraction between ions of opposing charge. Ions are formed 
when the electrons involved in ionic bonding are transferred from the less electronegative to the more 
electronegative atom. Metallic bonds result from the attraction between positive metal ions and 
surrounding delocalized electrons. Intermolecular interactions are attractive or repulsive forces acting 
between molecules and other particles (e.g., atoms or ions) and are weak relative to the intramolecular 
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forces. Intermolecular forces are categorized into a number of types, all of which emanate from dipolar 
interactions (Figure V-3).  

Figure V-1. Chemical and physical properties associated with intramolecular and intermolecular forces 
that are key influences on soil mobility.  

STRONG Interactions: 

Covalent bonding 

Ionic bonding 

Metallic bonding 

Chemisorption 

(irreversible binding) 

WEAK Interactions: 

Physisorption 

(reversible binding) 

Solubility 

Vapor pressure/Volatility 

Henry's Constant 

Absorption 

These types of interactions include dipole-dipole attractions in polar molecules (most notably the 
aforementioned hydrogen-bonding, the strongest of the intermolecular forces), induced dipole-dipole 
attractions, and induced dipole attractions such as London dispersion forces (the weakest of 
intermolecular forces). Although comparatively weak, these forces are pervasive in nature and are 
responsible for a variety of familiar bulk molecular properties, including the non-ideal behavior of 
gases (in contrast to that predicted by the ideal gas law), viscosity, diffusion, and the surface tension of 
liquids, vapor pressure and the boiling point of gases, and the melting point and sublimation of solids. 
Dipole-dipole interactions, induced dipole-dipole interactions, and dispersion forces are attractive 
forces known collectively as van der Waals forces, defined as the weak, short-range electrostatic 
attractive forces between uncharged molecules arising from the interaction of permanent or transient 
electric dipole moments. A fourth van der Waals force, known as the hydrophobic effect, is repulsive 
rather than attractive in character. The hydrophobic effect is observed with nonpolar molecules in 
aqueous solutions. 
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Figure V-2. Types of intramolecular bonding forces: covalent [sharing of electrons(s)], ionic [donation 
of electron(s)], and metallic [delocalized electron(s)].  

 

Covalent bond 
(electron sharing) 

 

Ionic bond 
(electron donation) 

 

 

 

Metallic bond 
(delocalized electrons) 

In such solutions, water is excluded to the point that water molecules are forced to bond with each 
other rather than with a nonpolar molecule, or to the nonpolar portion of a molecule, leading to the 
formation of aggregates or, in amphiphilic (molecules containing both a nonpolar hydrophobic region 
and a polar hydrophilic region) compounds, micelles.  

 

Delocalized 
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metal atoms
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Figure V-3. Intermolecular forces: the weak attractive forces between molecules that drive the leaching process. Forces denoted by an 
asterisk (*) are categorized as van der Waals forces. Similarly, induced dipole interactions are known as dispersion or London forces.  
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The hydrophobic effect is not a true interaction per se as the effect simply inhibits a true dipole-dipole 
interaction (i.e., hydrogen bonding by water) from taking place. The driving force behind the 
hydrophobic effect is entropy. When water solvates (dissolves) molecules, it is ordering itself (i.e., 
forming solvation cages around the molecules in solution). If the molecules are nonpolar or 
amphiphilic, they will cluster and exclude water. In doing so, less water will have to order itself, thus 
creating greater entropy (randomness), a state highly favored by nature. While not particularly strong, 
the hydrophobic effect can sometimes be as important a force as hydrogen bonding in the 
development of certain properties, e.g., the adsorption of nonpolar pesticides onto hydrophobic soil 
surfaces or in the formation of the tertiary structures (folding behavior) of proteins. 

The physical properties of pesticides that contribute to soil mobility are all highly dependent on the 
various intermolecular forces discussed above. The degree to which such properties as solubility, 
sorption, and volatility drive the leaching process depends in large part on the type and magnitude of 
surface interactions that are established between a given pesticide and the soil environment. These 
surface interactions—the intermolecular and intramolecular forces—are in turn determined by 
molecular structure. As molecular structure varies, so do the attendant molecular surfaces and the 
properties originating from them. Consequently, the interrelationships between molecular structure, 
surfaces, and properties are inexorably linked. To a large degree the observable endpoints—the 
properties themselves—appear to emanate from polarity, orbital energies, and electrostatic charge 
distribution—all drawn from and unique to each pesticide chemical structure. These phenomena thus 
appear to be useful soil mobility indicators. 

Physicochemical Properties: The Driving Mechanisms of Leaching 

The leaching process is complex and involves a number of physical, chemical, and environmental 
mechanisms. Soil properties such as texture, pH, and organic matter content affect pesticide mobility, 
as do management practices (e.g., the rate, timing and method of pesticide application), rainfall and 
irrigation, and site conditions such as depth to groundwater. However, the physicochemical properties 
of individual pesticide active ingredients perhaps influence leaching potential more than any other 
factor. Despite the complicated network of interdependent and interconnected processes influencing 
pesticide mobility in soils, four physicochemical properties of pesticides consistently emerge as the 
dominant factors affecting their propensity to leach: solubility, volatility, sorption, and persistence. 
These properties determine the likelihood that a pesticide will persist in the environment, bind to soil 
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and organic matter (sorption), dissolve in water (solubility), and become airborne (volatility). They are 
intrinsic molecular properties strongly dependent on chemical structure and, although mutable under 
inconsistent environmental conditions, pervasive. The solubility of pesticides in water, for example, 
depends entirely on the presence or absence of charge separation within the molecule, which 
produces favorable bond dipole orientations. When there are no polar bonds in a molecule, there is no 
separation of charge and the molecule is nonpolar. Chlorine gas (Cl2) has no polar bonds because the 
electron charge is identical on both atoms, making it a nonpolar molecule (Figure V-4a). None of the 
bonds in hydrocarbon molecules, such as hexane, C6H14, are significantly polar, so hydrocarbons are 
nonpolar (Figure V-4b). Often, polar bonds may be present in a molecule, but the symmetrical 
arrangement of these bonds results in no net dipole as the dipoles cancel each other. This situation 
occurs in carbon dioxide (Figure V-4c) and perchloroethylene (Figure V-4d). Polarity occurs in a 
molecule as a result of a difference in electronegativity between the bonded atoms comprising its 
molecular structure. This arrangement results in a dipole moment, i.e., the vector sum of all its 
constituent bond dipoles, and an overall separation of charge in the molecule. In addition, the 
molecule must have a geometry which is asymmetric in at least one direction, so that the bond dipoles 
do not cancel or diminish each other. Water (Figure V-4e) and chloromethane (Figure V-4f) are 
examples of elementary polar molecules having dipole moments with favorable geometric symmetry. 

Figure V-4. Dipoles and net dipole moments of (a) chlorine gas, (b) hexane, (c) carbon dioxide, (d) 
perchloroethylene, (e) water, and (f) chloromethane.  

 

Molecular structure can strongly influence the susceptibility of pesticides to bind to soil particles, soil 
organic matter, humic substances, and the mineral and other hydrophobic fractions of soils. The 
adsorption process is generally classified as either physical adsorption (physisorption) or chemical 
adsorption (chemisorption). Weak interactions between substrate and adsorbate, characteristic of 
hydrogen bonding, induced dipolar interactions, and other van der Waals forces, lead to physisorption. 
Strong interactions, characteristic of covalent, ionic, and sometimes metallic bonding, lead to 
chemisorption. Adsorbed molecules remain structurally unchanged when physisorbed but may be 
cleaved into two or more fragments when chemisorbed. Chemisorption involves more energy than 
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physisorption. The difference between the two processes is loosely based on the binding energy of the 
interaction. The presence of charge or a separation of charge in the molecule are key factors in 
determining the type and strength of its interaction with the soil surface. If no charge, or no favorable 
separation of charge, is present in the molecule, then it is neutral (or perhaps weakly polar) and will 
tend to be hydrophobic and associate with lipophilic structures, e.g., the hydrophobic components of 
humic macromolecules. Conversely, increasing polarity enhances the aqueous solubility of the organic 
molecule so that adsorption is reduced. However, polar molecules can adsorb to soils, usually via a 
hydrogen-bonding mechanism onto clay minerals (physisorption) or through the formation of 
coordination complexes (chemisorption) (MacKay and Canterbury, 2005). Molecular size, shape, and 
surface charge have strong influences on adsorption processes, particularly when the adsorptive 
pesticide must penetrate through restricted openings to reach the binding sites in adsorbents. Large 
molecules tend to be more strongly held than smaller ones with similar shapes, polarities, and charge 
characteristics. Increased adsorption with increased molecular size is a well-established phenomenon 
described by Traub’s rule, which states that adsorption onto nonpolar surfaces increases with 
molecular size and decreasing solubility (Karanfil, 2006). For pesticides having a molecular structure 
consisting of both hydrophilic (polar) and hydrophobic (non-polar) groups, the hydrophobic fragments 
will be adsorbed at the surface and the hydrophilic fragments will tend to stay in the water phase. 

The volatility of a pesticide depends on its molecular structure and the strength of the intermolecular 
forces with which it interacts with its environment, as these must be overcome in order for it to escape 
to a gaseous state. For low molecular weight pesticides, the dispersion forces are very weak and can be 
easily overcome. Hence, nonpolar pesticides like methyl bromide are gases at room temperature. As 
the molecular weight increases, so do the dispersion forces. With pesticides having large relative 
molecular mass, the van der Waal's forces are sufficiently large to keep the compound from volatilizing 
even at higher temperatures. Since virtually all pesticides are covalent molecules, they are attracted to 
one another by either van der Waal's (induced dipole) forces or dipole-dipole interactions, or both. In 
addition, there are two types of dipole-dipole interactions, permanent dipole-dipole attractions and 
hydrogen bonding. The van der Waal's forces are always present between covalent molecules but are 
the weakest forces when the molecules are small. Permanent dipole-dipole forces are stronger than 
van der Waal's attractions but weaker than hydrogen bonding. London dispersion forces act between 
all molecules regardless of their structure. The London dispersion force is the weakest intermolecular 
force. It is a temporary attractive force that results when the electrons in two adjacent atoms occupy 
positions that result in induced dipole-induced dipole attractions. The strength of the dispersion force 
depends on the mass, surface area, and shape of the molecule. When comparing two compounds that 
have similar molecular structure, the shape of the molecule becomes important. Branched molecules 
are more spherical in shape and have a lower surface area. This means that there is less surface for the 
dispersion force to act, and the overall force between the molecules is smaller. Hence, greater 
branching reduces the intermolecular force and consequently the volatility. Pesticides with hydrogen-
bonding capabilities have lower volatility because the molecule can actively interact and form weak 
bonds with the solvent (water), the soil itself, and other soil constituents. Pesticides with hydrogen 
bonding capabilities include those containing alcohol, carboxylic acid, amine, and amide functional 
groups. Hydrogen bonding in carboxylic acids is particularly strong, as hydrogen bonds can form with 
both the acidic hydrogen and the carboxylic oxygen. Hydrogen-bonding occurs when a molecule 
contains hydrogen attached to oxygen or nitrogen. These two elements are highly electronegative and 
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draw the electrons away from the hydrogen atom. Because hydrogen has only a single electron, this 
inductive effect exposes the hydrogen nucleus, causing a high partial charge density, making the N-H 
and O-H bonds very polar. Accordingly, hydrogen-bonding is a relatively strong force (about one tenth 
of a normal covalent bond). 

II. Quantum Chemical Descriptors: Fundamental Supporting Theory and Characterization 

Fundamental particles such as electrons are defined as matter waves (i.e., having wave-particle duality) 
and are described using a wave function, ψ. The surface of a molecule is delineated by its total 
electronic wave function. The value of ψ at a given three-dimensional point in space is proportional to 
the amplitude of the electron matter wave at that point. But because most wave functions are 
complex functions containing 𝑖𝑖 =  √−1, the amplitude of the matter wave has no real physical 
meaning. It is not measurable. However, the square of the wavefunction, ψ2, is proportional to the 
probability of finding an electron in a particular volume of space within an atom or molecule. The 
function ψ2 is called the electron probability density or, more informally, the electron cloud. Molecules 
are surrounded by the negatively charged electron cloud containing its electrons, and it is the size and 
shape of the cloud and not that of the nuclear skeleton that defines the size and shape of the 
molecule. The molecular surface can be defined as an equal probability boundary surface given by the 
wave function ψ2, where there is a ≥ 95% chance of an electron occupying a point on the cloud at a 
given time (Gao, 2013).  

An electron in an atom has a fixed energy and a fixed radial and angular spatial distribution called an 
orbital. The radial distribution defines the distance an electron is from the nucleus, the angular 
distribution describes the shape of the orbital, i.e., the shape of the electron cloud. An s orbital has a 
spherical shape because its angular distribution is uniform at every angle. A p orbital has a “dumbbell” 
shape because its angular distribution is not uniform at every angle. Similarly, a d orbital has an even 
more complex angular distribution and a cloverleaf shape. Collectively, the number and type of orbitals 
in an atom define its electronic structure. When atoms combine to form a molecule, the electronic 
structure of the resultant molecule is different than that of its individual constituent atoms. The 
electrons in atoms are localized––the electron density is confined to the atomic orbitals (e.g., s, p, d) to 
which they belong, as shown for a carbon atom in the diagram below. The two valence electrons in 
carbon are confined to the 2px and 2pz orbitals, respectively:  
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When a molecule is formed, however, the electrons become delocalized, i.e., the electron density is 
allowed to spread out so that the molecular orbital electrons extend over several adjacent atoms, or 
even the entire molecule. To exemplify this concept, consider two molecular orbitals that are of 
particular interest in a molecule, the highest occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO). The HOMO is the highest energy molecular orbital containing 
electrons; therefore, energetically it is the easiest to remove electrons from this orbital, e.g., donating 
electron density to form a bond (act as a Lewis base), undergo oxidation, etc. The LUMO is the lowest 
lying orbital that is empty, so energetically it is the easiest to add more electrons into this orbital, e.g., 
accepting electron density to form a bond (act as a Lewis acid), undergo reduction, etc.  

 

The HOMO and LUMO concept originate from Frontier Molecular Orbital (FMO) theory, which focuses 
on the orbitals at the outer edge (the frontier) of a molecule rather than all the orbitals. Outer-edge 
orbitals tend to be the most spatially delocalized and have the highest and lowest energies, whether 
they are occupied or unoccupied. The rationale for concentrating attention on these two orbitals is 
that they will usually be the closest in energy of the interacting orbitals. A basic postulate of FMO 
theory is that interactions are strongest between orbitals that are close in energy. Accordingly, 
reactions between two molecules typically involve the HOMO of one and the LUMO of the other. FMO 
theory proposes that these strong initial interactions can then guide the course of a reaction or 
interaction. Electronic properties based on frontier orbital energies are closely related to chemical and 
biological reactivity.  

Since envisioning molecular orbitals, in particular the HOMO, can be conceptually challenging, it’s 
instructive to have a visual depiction. Consider the carbamate insecticide carbaryl, a member of the 
model development set and a non-leacher: 

 
Carbaryl (1-naphthyl methylcarbamate) 
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The diagram below shows the HOMO for carbaryl derived from its wavefunction:  

 

The red (negative) and blue (positive) lobes represent the electron clouds indicating where the 
electrons are likely to be found. Note that the highest energy electrons in the carbaryl system are 
those that are spread over the naphthalene ring system and extending to the carbamate oxygen 
moiety. The HOMO of carbamate is thus a molecular orbital which puts significant electron density on the 
ring and on the oxygen bonded to it. These are electron rich or nucleophilic regions of the molecule, where 
a nucleophile is defined as a chemical species that donates an electron pair to form a chemical bond in 
a reaction (which is also the definition of a Lewis base). Hence, high-energy HOMO electrons are the 
most available electrons for interacting in chemical reactions or in other interactions involving 
electrons (e.g., ionic bonding, H-bonding, and other intermolecular forces).  

HOMO energies have been shown to be related to some of the key mechanisms that characterize and 
influence the mobility of chemicals in the soil environment. Kamachi et al. (2019) have reported that 
HOMO energies and dipole moment are the first and second most important properties, respectively, 
for rationalizing and predicting the adsorption energies of small molecules on titanium dioxide (TiO2) 
surfaces. HOMO energies have also been shown to have quantitative relationships with the Freundlich 
adsorption exponent 1/n (Oskouie et al., 2002) and organic carbon normalized adsorption coefficients, 
KOC (Doucette, 2003). The National Research Council (2014) has noted that many physicochemical and 
environmental fate properties of molecules can be described from first principle based on HOMO and 
LUMO frontier orbital energies. In a comprehensive review by Mamy et al. (2015), 790 quantitative 
structure-activity relationship (QSAR) models for estimating the fate of organic compounds in the 
environment from their molecular properties were evaluated. All of the models were developed using 
only structural molecular descriptors. The most significant equations were found for pKA, KOW, 
adsorption to soils, certain biodegradation processes, and abiotic degradation in soils, water, and 
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sediments. Five molecular descriptors—EHOMO, ELUMO, polarizability, dipole moment, and molecular 
weight—were in particular used in the 790 equations. The utility of quantum chemical descriptors for 
estimating biological, chemical, physicochemical, and solvent properties was also explored by Karelson 
et al. (1996). EHOMO was one of the key molecular properties used in the numerous modeling studies 
summarized in this article, including models for estimating biological activities, chemical reactivities, 
partition coefficients, and physicochemical properties. 

The size and shape of an electron cloud is described by the electron density, i.e., the number of 
electrons per unit volume. The Spartan program renders the surface area of a molecule from an 
isodensity surface (iso = equivalent, i.e., an isodensity surface represents points of a constant electron 
density), where the electron densities are obtained directly from quantum chemical calculations. The 
size and shape of the surface is determined by the percentage of total electrons enclosed, typically 
0.002 electrons per cubic atomic unit. This represents a very low level of electron density and such 
points are typically found near the outermost fringe of the molecule's electron cloud. Therefore, these 
points approximate the maximum spatial boundary of the molecule, i.e., its size and shape. 
Interestingly, when electron density is plotted as a function of distance from the nucleus, it never falls 
to zero. Thus, when atoms and molecules brush up against each other, their electron clouds overlap 
and merge to a small extent. The image shown in Figure V-5 illustrates such an electron cloud for the 
molecular orbitals comprising the boundary surface of carbaryl. 

Figure V-5. The molecular boundary surface (electron cloud) of the carbamate insecticide carbaryl. The 
molecular surface area and volume are calculated from this surface. 
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Molecular surface area is a measure of the total area of this isodensity surface in units of Å2. Upon 
determining the isodensity points for a particular molecule, they are then mapped onto its geometry-
optimized line angle structure (i.e., the molecular skeleton) to yield a 3-D molecular surface. Note that 
although the density-based surface shown in Figure V-5 does not provide discernible boundaries 
between atoms like the space-filling model does (Figure V-6), it is a more accurate representation of 
the molecule because in reality electrons are associated with the molecule as a whole and not with 
individual atoms (Spartan ’20 Tutorial and User's Guide).  

Figure V-6. The space-filling model of carbaryl, where individual atoms are represented by spheres 
whose radii are proportional to the actual radii of the atoms and whose center-to-center distances are 
proportional to the distances between the atomic nuclei. 

 

Once the isodensity surface of a molecule is known, an electrostatic potential map can be generated 
for it. These maps are useful diagrams for envisioning molecular charge distributions and for 
identifying polar and non-polar regions. The electrostatic potential at any point (x, y, z) on the 3-
dimensional surface of the molecule is specified by the electrostatic potential energy between an 
imaginary positively charged (+1) ion located at that point and the molecule. If the ion is attracted to 
the molecule, then the potential is negative. If the ion is repelled by the molecule, then the potential is 
positive. Thus, the charged ion will be attracted to electron-rich regions (negative potentials) of the 
molecule and repelled by electron-poor regions (positive potentials). Spartan calculates the 
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electrostatic potential at selected points on the 0.002 isodensity surface and maps the surface by 
colors representing different potentials. The highest negative potential is assigned a bright red color 
and the highest positive potential, a bright blue color. 

Intermediate potentials are assigned colors according to the color spectrum shown below (using a 
probe sensitivity of ± 150 kJ): 

-150 kJ/mol 0 kJ/mol 150 kJ/mol 

  

The red and blue regions of an electrostatic potential map specify the most electron-rich (partially 
negative charged) and the most electron-poor (partially positive charged) regions of the molecule, 
respectively (Hehre, 2003). The intermediate colors orange, yellow, green, and light blue areas 
represent a range of nonpolar regions of the molecule (with green being the most nonpolar). The 
electrostatic potential map thus identifies and makes observable the charged and polar regions of the 
molecule and reveals the overall molecular charge distribution (Figure V-7).  

Figure V-7. The electrostatic potential mapped over the electron density of carbaryl. The vivid blue and 
red regions of the molecule represent the areas where the electrostatic potential is < -150 kJ/mol and 
> 150 kJ/mol, revealing areas of the molecule having the highest partial negative (blue) and positive 
(red) charges. These regions are also potentially good hydrogen bond acceptor and donor sites, 
respectively. 
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The Maximum Electrostatic Potential (MaxElPot) is defined as the point for which the absolute value of 
the electrostatic potential is ≥ maximum sensitivity (in this case, ± 150 kJ) and corresponds to the most 
acidic proton in the molecule. Hydrogen-bond acceptor and donor sites are also related to the 
electrostatic potential obtained from quantum chemical calculations. For example, a negative potential 
(red) associated with an oxygen center suggests that it might serve as a hydrogen-bond acceptor, while 
a positive potential (blue) associated with a hydrogen attached to an oxygen, nitrogen, or fluorine 
center suggests its role as a hydrogen-bond donor. Such information may be useful for predicting 
which acceptor or donor sites are likely to be strong and which are likely to be weak. If a molecule has 
a permanent dipole and subsequent dipole moment, it’s a polar molecule. A dipole moment is the 
vector sum of all of the bond dipoles in the molecule. Since it is a vector quantity, a molecular dipole 
moment has both a magnitude and a direction. The accumulation of negative charge over an area in a 
molecule is measured in debyes (represented by the letter D), and its magnitude is dependent upon 
the size of the charge and the distance separating the point charges. Although a polar bond is a 
prerequisite for a molecule to have a dipole, not all molecules with polar bonds exhibit dipole 
moments due to unfavorable molecular symmetry or geometry.  

In Figure V-8, the chemical structure of carbaryl is shown (a) relative to its electrostatic potential map 
(b) to identify regions of the molecule that may be suitable hydrogen bonding acceptor and/or donor 
sites, reactive sites, and hydrophilic/hydrophobic sites on the molecule. The bright blue area on the 
electrostatic potential map corresponds to the most acidic hydrogen (i.e., the N-methyl proton in 
carbaryl). But the most electron-deficient hydrogen is also a strong hydrogen bond donor site (and also 
an electrophilic center), shown as the purplish colored sphere (c). The green sphere identifies the 
carbonyl oxygen as an electron rich hydrogen bond acceptor site (and also a nucleophilic center). The 
blue spheres represent hydrophobic regions of the molecule, in this case the naphthalene ring system. 
The red and blue regions in the molecule shown in Figures V-7 and V-8(b) also represent polar bonds, 
where polarity is defined as an unequal sharing of electrons in a covalent bond. More precisely, polar 
bonds form as a consequence of charge separation between two atoms involved in a covalent bond. 
Charge separation occurs when the electronegativities of the two atoms differ substantially, e.g., C−O, 
H−O, C−F, and C−N. In such situations, the bond is said to be dipolar. While dipoles develop between 
atoms in bonds due to electronegativity differences, molecules form dipole moments.  
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Figure V-8. The chemical structure of the carbamate insecticide carbaryl (a). When the electrostatic 
potential is overlaid on the electron density map (b) the bright blue area corresponds to the most 
acidic hydrogen (i.e., the N-methyl proton). But the most electron-deficient hydrogen is also a strong 
hydrogen bond donor site (c), shown as the purplish colored sphere (the green sphere identifies a 
hydrogen acceptor site, and the blue spheres represent hydrophobic regions of the molecule).   
(a) 

 

 

(b) 

 

 

(c) 
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The dipole moment descriptor in Equation 3 is indicative of molecular polarity. Polar molecules readily 
form hydrogen bonds, which is the intermolecular force necessary for aqueous solvation and 
physisorption to soil particles and/or the humic/fulvic carbon fractions present in natural waters and 
soils. In general, the larger the magnitude of the dipole moment the more polar the molecule. Those 
pesticides having a propensity to leach are more likely to have larger dipole moments, and vice versa, 
because polar molecules tend to be more water soluble and are thus more mobile in most soils. 
However, the statistical relationship between mobility and dipole moment may or may not be linear, 
as other factors can mitigate polarity effects. For example, the insecticide oxamyl [(EZ)-N,N-dimethyl-2-
{[(methylcarbam-oyl)oxy]imino}-2-(methylthio)-acetamide] has a significant dipole moment (µ = 6.98), 
but is not inclined to leach because it degrades rapidly under aerobic conditions in agricultural soils 
(t1/2 < 10 days). In contrast, the soil fumigant dibromochloropropane (DBCP) has a relatively low dipole 
moment (µ = 1.88), but is a known leacher because it is persistent in the soil environment (t1/2 > 300 
days). Given enough time and a recalcitrant nature, almost any chemical has the propensity to 
eventually leach to groundwater. 

Discussion and Summary 

That the molecular and electronic structure of molecules play a key role in determining their observed 
properties and behavior—indeed, that such properties are literally a function of structure—is clearly 
demonstrated by the widespread success of the numerous predictive models based on correlations 
with molecular structure descriptors generated from structural information. When considering 
quantum chemical descriptors, virtually all have at least some predictive power because they encode 
information about the fundamental nature of matter, from the size, shape, and volume of molecules to 
their electron densities, charge distribution, and orbital energies. Together with empirical descriptors 
representing macroscale properties, theoretical calculations can provide insight into the intermolecular 
mechanisms generating the properties under consideration. The objective of CDA was to find linear 
combinations from the initial pool of theoretical and empirical descriptors that provided maximal 
separation between the Leaching and Non-Leaching groups of chemicals. From these multivariate 
analyses, CDA has selected two empirical and three quantum indices for Equation 3. The model 
describes pesticide persistence directly in terms of experimentally-measured aerobic soil metabolism 
half-lives, where chemicals having half-lives of less than 60 days are considered transient, and 
chemicals having half-lives greater than 180 days are considered recalcitrant (U.S. EPA, 2013). Mobility 
is accounted for empirically by the organic carbon-normalized adsorption coefficient, KOC. While these 
terms are familiar and often robust indicators of persistence and mobility in the soil environment, their 
information content and discriminating power has proven to be less than optimal. When evaluated 
independently, the empirical properties Log10 soil aerobic half-life and KOC each account for 
approximately 86% (6 misclassifications) and 76% (10 misclassifications) of the estimated 
discriminating power of Equation 3, respectively. But when the quantum chemical predictor variables 
are included, the model yields just 2 misclassifications, or 95.2% of the total discriminatory power of 
the model (Figure V-9). The quantum chemical descriptors appear to function as statistical weighting 
factors or fine-tuning terms, amplifying the contributions of the empirical terms and sharpening the 
overall discriminating power of the model. They encode information describing the structural features 
of pesticides that link key intermolecular forces to the physicochemical properties influencing their 
mobility in soils.  
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Figure V-9. When evaluated independently, the empirical descriptors Log10 soil aerobic half-life and 
KOC each account for approximately 86% and 76% of the estimated discriminating power of the model, 
respectively. When the quantum chemical predictor variables EHOMO, dipole moment, and Log 
MaxElPot are included, the separation power increases to over 95%. 

 

Molecular descriptor values for the 42-chemical development set acquired from experimental 
measurements (Log10 soil aerobic half-life, log KOC) and molecular modeling calculations (dipole 
moment, EHOMO, log MaxElPot) are summarized in Table V-1. The mean value of each descriptor for the 
known leacher group and known non-leacher group was determined, and the results are compared 
below. For those descriptors that were log-transformed, the antilogs are shown in parentheses. 

Status Mean Log (Soil 
Aerobic Half-life) Mean Log (KOC) Mean Dipole Mean 

EHOMO 
Mean Log 

(MaxElPot) 
Leachers 2.2465 (176.4) 1.8816 (76.1) 4.8039 -8.8789 2.2694 (185.9) 
Non-leachers 1.4809 (30.3) 2.5669 (368.9) 3.4246 -8.5075 2.1626 (145.4) 
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Table V-1. Leacher (L) and non-leacher (NL) model development set of chemicals and the empirical 
and quantum chemical descriptors used in the Pesticide Leaching Model (Equation 3). The term 
MaxElPot = Maximum Electrostatic Potential. 

Leacher 
Status Pesticide 

Log 
Aerobic 
Half-life 

Log 
KOC 

Dipole 
Moment EHOMO Log MaxElPot 

L 1,2-Dichloropropane (1,2-D) 2.1461 1.6990 0.6500 -10.4000 2.0395 
L 2,3,5,6-Tetrachloroterephthalic acid (TPA) 2.1875 1.5798 0.0000 -9.2700 2.4860 
L Aldicarb sulfone 1.3222 1.0000 6.6100 -9.3100 2.3722 
L Atrazine 2.1644 1.9370 5.1900 -8.5200 2.2946 
L Bentazon 1.4914 1.8603 4.4900 -8.7300 2.4481 
L Bromacil 2.5366 1.1492 5.3300 -8.4700 2.4376 
L Deethylatrazine 2.2304 2.0414 5.2100 -8.5900 2.3495 
L Deisopropylatrazine 2.0107 2.1139 5.2800 -8.6100 2.3438 
L Dibromochloropropane (DBCP) 2.5563 2.0000 1.8800 -10.0900 2.1407 
L Diuron 2.5705 2.7326 7.2700 -7.9700 2.4059 
L Ethylene dibromide (EDB) 1.8451 1.9395 0.0000 -10.0100 2.0648 
L Hexazinone 2.3531 1.6551 7.0500 -8.7500 2.1181 
L Imidacloprid 2.9987 2.4609 8.1200 -9.0600 2.3097 
L Metolachlor ethanesulfonic acid (ESA) 2.1206 0.9542 8.9400 -8.9000 2.1423 
L Norflurazon 2.1139 2.6628 7.5900 -8.1500 2.3617 
L Prometon 2.6618 2.0000 3.1800 -8.0800 2.2491 
L Simazine 2.0414 2.1810 5.2600 -8.5400 2.2944 
L Tebuthiuron 3.0864 1.9020 4.4200 -8.3700 1.9910 

NL 1,3-dichloropropene 1.5145 1.8195 2.3000 -9.3800 2.1616 
NL Alachlor 1.1761 2.1055 4.5500 -8.6000 1.9609 
NL Carbaryl 0.7404 2.6298 3.1400 -7.6100 2.3416 
NL Carbofuran 1.3444 1.4099 2.1500 -7.6100 2.2999 
NL Chlorthal-dimethyl (DCPA) 1.4116 3.4091 0.0000 -9.1600 2.0507 
NL Cyanazine 1.1875 2.3744 5.1200 -8.6900 2.3564 
NL Dimethoate 0.3802 1.0000 1.7700 -8.7100 2.1291 
NL Disulfoton 1.1931 2.6906 6.0600 -8.2600 2.0402 
NL Ethoprop 1.5328 2.2636 0.3800 -8.8500 1.8855 
NL Fenamiphos 1.3838 2.3508 3.7400 -8.1400 2.3036 
NL Fonofos 1.7980 2.9515 2.6400 -8.2400 1.9630 
NL Iprodione 1.7482 2.8451 2.8700 -9.1300 2.1731 
NL Linuron 1.6893 2.8149 6.4200 -8.0700 2.3545 
NL Methomyl 1.6646 1.6021 4.1000 -8.1600 2.3357 
NL Methyl bromide 0.9823 2.1021 2.3100 -9.7400 2.0363 
NL Napropamide 2.6580 2.8247 4.1000 -7.4600 2.0247 
NL Oryzalin 1.8014 2.9478 3.6500 -8.5500 2.4225 
NL Oxamyl 1.0294 1.4997 3.5500 -8.4400 2.3233 
NL Oxyfluorfen 2.4639 3.8196 6.9000 -8.6000 2.1725 
NL Pendimethalin 2.1004 4.1761 4.6700 -8.2700 2.0712 
NL Phorate 0.4771 2.7311 2.8800 -8.3100 1.9742 
NL Propyzamide 1.4200 2.9165 4.1200 -9.1000 2.3401 
NL Thiobencarb 1.5682 2.7743 4.1600 -8.5500 1.9885 
NL Trifluralin 2.2765 3.5481 0.6100 -8.5500 2.1940 
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These values offer insight into the relative ability of each structural descriptor to differentiate a leacher 
class pesticide from a non-leacher class pesticide chemical based on the constituent information it 
encodes. Predictably, based on the known influence of persistence on leaching potential, the mean 
aerobic metabolism half-life is much longer for leachers (x̅ = 176 days) than for non-leachers (x̅ = 30 
days). Likewise, pesticides having a propensity to bind to soil organic matter are known to be less 
mobile than those that do not; consequently, KOC values are much smaller for leachers (x̅ = 76 mL/g) 
than for non-leachers (x̅ = 369 mL/g). As previously stated, the two empirical terms differentiate 
leacher from non-leacher quite well, but the addition of the quantum chemical terms increases the 
discriminating power of the model significantly (from a misclassification rate of around 15% to 5%).   

The quantum chemical descriptors encode specific information about the atomic and molecular 
properties of molecular systems of interest—the fundamental structural features associated with the 
system at the atomic level. The dipole moment, for example, is indicative of molecular polarity, but it 
also addresses the relative hydrogen-bonding capacity of individual molecules. H-bonding is an 
important mechanism associated with such properties as water solubility and reversible binding to soil 
(physisorption). A pesticide having a large dipole moment is thus more likely to be water soluble or 
more readily physisorbed onto soil particles or organic matter than one with a smaller dipole moment, 
because it has a larger H-bonding capacity. The magnitude of the descriptor value can thus provide 
insight into which intermolecular forces might be operating. Similarly, the magnitude of certain energy 
levels of the molecular orbitals present in a compound may offer some predictive qualities. The HOMO 
electrons are the highest energy electrons in the molecular system and as such are the most readily 
donatable (i.e., nucleophilic) in a reaction (with the LUMO of the reactant). The higher the energy of 
the HOMO the more likely the compound will be nucleophilic, labile, and perhaps more susceptible to 
environmental degradation processes, including irreversible soil binding (chemisorption—adsorption 
which involves a chemical reaction between the soil surface and the adsorbate). That the higher mean 
HOMO energy is associated with pesticides that do not have significant leaching potential seems to 
suggest that, in some cases, the parent may break down precipitously or bind irreversibly in the soil 
environment, which effectively immobilizes it. The maximum electrostatic potential identifies the most 
acidic hydrogen in the molecular system. A hydrogen atom attached covalently to a relatively 
electronegative atom such as N, O, or F is not only acidic, but is also an effective hydrogen bond donor. 
A hydrogen bond donor site is also known as a hydrogen bond acid (similarly, a hydrogen bond 
acceptor site is called a hydrogen bond base), analogous to the Lewis definition of acids and bases as 
electron donors and acceptors. In a hydrogen bond, the electronegative atom not covalently attached 
to the hydrogen is designated the proton acceptor, whereas the hydrogen that is covalently bound to 
the hydrogen is termed the proton donor, as illustrated below. 
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A hydrogen bond donor site encourages solubility and irreversible binding to soils and discourages the 
volatility of polar, semi-polar, and amphiphilic compounds (where an amphiphile is a chemical 
compound possessing both hydrophilic and hydrophobic groups, e.g., fatty acids or soaps). The 
relationship between the quantum chemical descriptors discussed above, the intermolecular and 
orbital properties they encode, and the physicochemical property or leaching mechanism associated 
with them are shown in Figure V-10. These associations are also summarized in Table V-2. 

Figure V-10. The connections between the quantum descriptors, the molecular property they encode, 
and the leaching mechanisms associated with them.   

 

Although dipole moment, EHOMO, and MaxElPot each encode information about specific molecular 
properties (e.g., dipole moment ≡ hydrogen bonding capacity and molecular polarity; see Figure V-7), 
these terms effectively form a composite molecular descriptor representing aggregate electronic 
structural properties that combine in unique but unknown proportions to describe individual 
molecules. They primarily act as ancillary terms which refine the strong but incomplete associations 
already established by the empirical descriptors aerobic soil half-life and KOC. Dipole moment, EHOMO, 
and Log MaxElPot were selected using a dimension-reduction procedure from a multi-dimensional 
space initially containing dozens of input variables; therefore, it is difficult (if not impossible) to discern 
in what manner or to what extent they combine to encode relevant supplemental information. 
However, it is possible to make inferences based on fundamental chemical principles, as previously 
discussed. For example, a pesticide having a large dipole moment will likely be polar and (depending on 
its other properties) water soluble or susceptible to physisorption, since mechanistically both are 
hydrogen-bond dependent. A pesticide having a small dipole moment, on the other hand, might be 
expected to be non-polar and prone to adsorption/absorption via dispersion forces or to volatility. 

The various intramolecular and intermolecular forces producing the properties that drive pesticide 
mobility in agricultural soils are summarized graphically in Figure V-11. Intermolecular forces, much 
weaker than the intramolecular forces of attraction that hold molecules together, are particularly 
significant because they determine the physical properties of molecules (i.e., properties that do not 
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change the identity of the substance). These forces represent the underlying mechanisms from which 
the observed and quantifiable properties of molecules develop. Accordingly, mobility is largely 
governed by the weak forces that originate in the dipolar interactions between molecules (see Figure 
V-3). The attractions and repulsions experienced by interacting molecules are coulombic in nature, i.e., 
they occur as a result of the interplay between neighboring charges and partial charges, resulting in the 
development of dipolar forces. How do these forces affect pesticide mobility? Soils are composed of a 
mixture of sand, silt, clay, and organic matter. Both the clay and organic matter particles have a net 
negative charge. Thus, these negatively charged soil particles will attract and hold positively charged 
pesticides, both via chemisorption (intramolecular covalent/ionic/metallic bonding) and physisorption 
(intermolecular hydrogen bonding, dispersion) mechanisms. The dispersion (i.e., induced dipole-
induced dipole) forces characterizing uncharged, nonpolar pesticides is the principle driving force for 
the hydrophobic effect and the absorption process in soils, suspended and dissolved solids, and organic 
matter. Dispersion forces, if numerous enough (e.g., in a large nonpolar molecule), will generally inhibit 
volatilization, facilitate the hydrophobic effect (i.e., colloidization and aggregation), and ultimately 
promote absorption to nonionic surfaces. Polar and many amphiphilic compounds may (1) interact 
strongly with the aqueous soil solution via hydrogen bonding and are readily solvated and transported 
through the soil profile, and (2) adsorb to soil particles, organic matter, and other soil fractions 
containing polar functional groups or charged ionic or metallic species. 
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Table V-2. Overview of the model quantum descriptors and the intermolecular forces and 
physicochemical properties associated with them. 

Dipole Moment 

Descriptor Physicochemical Property Associated Intermolecular Force 

High values: Solubility 
Physisorption (H-bonding) 
Physisorption (ionic bonding) 

Van der Waals forces: 
• Hydrogen bonding
• Dipole-dipole interactions
• Ion-dipole interactions

Low values: Non-polar interactions: 
Absorption (hydrophobic effect) 
Volatility (weak attractions) 
Physisorption (via dispersion forces) 

Weak Intermolecular Forces: 
• Induced dipole interactions
• Dipole-induced dipole interactions
• Ion-induced dipole interactions
• London dispersion forces

Maximum Electrostatic Potential (MaxElPot) 

Descriptor Physicochemical Property Associated Intermolecular Force 

High values: Physisorption (via-H-bonding) Acidic hydrogens and associated 
hydrogen bond donor sites 

Low values: Solubility (via H-bonding) Weak non-polar interactions (van der 
Waals forces); hydrophobicity Volatility (weak attractions) 

Absorption into soil organic matter 
(hydrophobic effect) 

Non-polar, weak van der Waals 
interactions 

EHOMO 

Descriptor Leaching Mechanism Associated Intramolecular Force 

High values: Chemisorption (covalent, ionic or 
metallic/coordination complex bonding); 
moderate to rapid abiotic and/or biotic 
degradation 

Orbital energy-facilitated nucleophilic 
reaction sites  

Low values: Chemical stability; Environmental 
persistence 

Orbital stability, non-reactive. 
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Figure V-11. Overview of the intramolecular (covalent/ionic/metallic bonding) and intermolecular (van der Waals, dispersion) forces 
driving the mobility of pesticides in soils.  
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That the empirical terms Log Aerobic Half-life and Log KOC are strongly associated with the 
environmental persistence of pesticides and pesticide mobility in soils, respectively, is unequivocal and 
well-established. A pesticide that is environmentally persistent has an increased potential to leach to 
groundwater based solely on its long-term availability in the soil. If it has a low KOC it may eventually 
percolate through the soil profile and contaminate susceptible aquifers. If it has a high KOC it may be 
prone to runoff via a number of potential transport mechanisms. The electronic and molecular orbital 
descriptors selected by CDA are aggregate indices that discriminate between leacher and non-leacher 
groups in a significant but inexplicable manner. Yet they represent real molecular properties. 
Collectively they encode information which broadly accounts for the intermolecular forces responsible 
for producing the various physicochemical properties that influence and drive the leaching process in 
the soil environment. As illustrated in Figure V-12, the leaching model indicates that leaching potential 
increases (i.e., MLV values > 14.4706) with increasing persistence (log soil aerobic half-life), polarity 
(dipole moment) and H-bond acidity (maximum electrostatic potential), but decreases (i.e., MLV values 
< 14.4706) with increasing adsorption (KOC) and orbital energy (since bonding orbitals are always 
negative, EHOMO energies get progressively less negative as they increase). Combined, these five 
parameters appear to uniquely capture the molecular properties of each pesticide active ingredient 
that are indicative of leaching. While the tendency to leach is strongly dependent on properties that 
can be accounted for directly by empirical relationships, these associations alone do not adequately 
discriminate between those chemicals that are potential leachers and those that are not. The quantum 
descriptors discriminate more surreptitiously than those drawn from empirical data, but the aggregate 
electronic structure information they encode provides key information about each chemical’s unique 
physicochemical and molecular properties and helps compensate for the information absent in 
empirical data.  

Figure V-12. Summary of how the model responds when each descriptor increases in magnitude. 
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Appendix VI —Procedure for Calculation of Molecular Properties of 
Chemicals Using Spartan ’20 Software 

1. Search for chemical name at PubChem website (https://pubchem.ncbi.nlm.nih.gov/).

a. Verify search result with the CAS number from DPR’s Pesticide Data Index Application
and the reported molecular weight. Consider verifying search result of molecular
diagram with structure diagram submitted by registrant.

b. When considering a salt or ester that disassociates rapidly into the acid form, select
structure of the acid form.

2. Following selection of the chemical in PubChem, select ‘Download’ tab, then ‘Save’ for ‘SDF’ file
format under ‘2D Structure’ option.

3. In Spartan ’20 open the saved SDF file from the ‘File’ menu. Accept auto conversion from 2D to
3D format.

a. If the SDF file is unavailable or the structure is incorrect compared to the structure
diagram submitted by the registrant, manually create the molecular structure in Spartan
‘20. Alternatively, input the SMILES formula in Spartan ’20 to auto-generate the
structure. Verify the resultant molecular structure with the structure diagram submitted
by the registrant.

b. If the molecule is chiral, change the chiral center(s) from R to S, as necessary, and freeze
chirality.

4. Select ‘Setup’ from menu. Select ‘Calculations’ from drop down menu.

a. Select ‘Equilibrium Conformer’ with ‘Molecular Mechanics’ ‘MMFF’ from drop down
menu.

b. Check ‘OPTIONS’ box and enter ‘SEARCHMETHOD=SYSTEMATIC’ into text field.

c. Select ‘Submit’. Allow Spartan ’20 to complete execution, then select ‘OK’.

5. Select ‘Setup’ from menu. Select ‘Calculations’ from drop down menu.

a. Select ‘Equilibrium Geometry’ at ‘Ground’ state in ‘Gas’ with ‘Density Functional’
‘wB97X-D’ ‘6-31G’ from drop down menu.

b. Check ‘QSAR’ box.

c. Check ‘OPTIONS’ and enter ‘POSTSOLVENT=SM8:WATER’ into text field.

https://pubchem.ncbi.nlm.nih.gov/
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d. Select ‘Submit’. Allow Spartan ’20 to complete execution. Select ‘Monitor’ icon in menu 
ribbon to display progress of execution and select ‘OK’ once completed. In the rare 
event when execution fails to complete, rerun the Equilibrium Geometry step without 
the SM8 option. 

6. Select ‘Display’ menu and select ‘Properties’ in drop down menu. 

a. In ‘Properties’ box, select ‘Molecule’ tab, then click selection for ‘EHOMO’ and ‘Dipole 
Moment’.  

b. In ‘Properties’ box, select ‘QSAR’ tab, then click select for ‘MaxELPot’.  

c. Close ‘Properties’ box. 

7. Select ‘Display’ menu, then ‘Spreadsheet’ from drop down menu. Values for ‘EHOMO’, ‘Dipole 
Moment’, and ‘MaxELPot’ will be displayed. 

a. If ‘Equilibrium Geometry’ was executed without the SM8 option, the calculated dipole 
moment value will be underestimated by 25-30%. Adjust dipole moment value 
accordingly. 
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