Final Report for Department of Pesticide Regulation (Contract No. 21-C0035)

Report Contract No. 21-C0035
Jay Gan, University of California, Riverside
2024

Abstract

Neonicotinoid insecticides are among the most used insecticides and their residues are frequently found in surface water due to their persistence and mobility. Neonicotinoid insecticides exhibit toxicity to a wide range of aquatic invertebrates at environmentally relevant levels, and therefore their contamination in surface water is of significant concern. In this study, we investigated the spatiotemporal distribution of six neonicotinoids in a large wetland system, the Prado Wetlands, in Southern California, and further evaluated the wetlands’ efficiency at removing these insecticides. Total neonicotinoid concentrations in water ranged from 3.17 to 46.9 ng L-1 at different locations within the wetlands, with imidacloprid and dinotefuran among the most detected. Removal was calculated based on concentrations as well as mass fluxes. The concentration-based removal values for a shallow pond (vegetation-free), moderately vegetated cells, densely vegetated cells, and the entire wetland train were 16.9%, 34.2%, 90.2%, and 61.3%, respectively. Principal component analysis revealed that pH and temperature were the primary factors affecting the removal of neonicotinoids. Results from this study demonstrated the ubiquitous presence of neonicotinoids in surface water impacted by urban runoff and wastewater effluent and highlighted the efficiency of wetlands in removing these trace contaminants due to concerted effects of uptake by wetland plants, photolysis, and microbial degradation.

Attachments