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Background

The Department of Pesticide Regulation (DPR) regulates fumigants as restricted materials and
manages the use of these pesticides through permits or regulations restricting their use practices.
The department has developed mitigation measures to minimize acute exposure of persons off-
site to fumigant vapors that escape from the application site following a fumigant application.
These mitigation measures are developed with the objective of avoiding the exceedance of air
concentration targets set by the Medical Toxicology Branch in DPR for specific fumigants. The
air concentration target exposure duration and concentration levels are set at appropriate levels
for the toxicological action of a specific fumigant. For example, Methyl Bromide (MeBr) has an
acute air concentration target of 2 10 parts per billion (ppb) as a 24-hour Time Weighted Average
(TWA) (Nelson, 1992),  while Methyl Isothiocyanate (MITC), has an acute air concentration
target of 220 ppb as a l-hour TWA (Gosselin, P. per. comm.). The differences in these targets
reflects the differences in the toxicological action of these two fumigants. The air concentrations
of these two targets are TWAs. To obtain a TWA air concentration the air is sampled in a
continuous manner for a specific period of time and the concentration is then determined by
dividing the total mass found in the final sample by the total air flow during the sampling period.
The TWA air concentration is a measurement that represents a time-integral of concentration
(Csanady, 1973).

The Ensemble Mean Concept

The concept that the TWA air concentration represents a time-integral of concentration is
important to relating the measured air concentrations to air dispersion model predictions of air
concentrations. DPR uses standard air dispersion modeling techniques based upon statistical
representation of a pollutant plume to predict expected air concentrations of various fumigants
given a specific set of application and meteorological conditions. The foundation of these
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techniques dates back to G.I. Taylors (192 1) concept of diffusion by continuous motion. The
underlying concept of this prediction technique is that the pollutant molecules faithfully follow
the motions of the air in which they are embedded. Therefore, statistical properties of the
atmospheric turbulence at the time of the pollutant release can be used to predict the statistical
time history of a pollutant plume (Schnelle and Dey, 2000). Essentially, this approach is built
upon the foundational assumption that atmospheric diffusion is a direct result of atmospheric
turbulence (Hanna, 1982).

There is no single functional form that uniquely describes atmospheric turbulence and diffusion.
However, the Gaussian function can be supported by several different arguments as an
appropriate function to characterize average plume diffusion. First, the Gaussian function
expresses the essentially random nature of the phenomena by analogy with the central limit
theorem; namely, that the distribution of sample means from any population (with a mean, u, and
variance cr2 (0 < 02 < oo)), regardless of the underlying distribution of that population, tends
towards the Gaussian distribution (Batchelor, 1949). A second basis for the assumption of a
Gaussian form can also be provided by the observation that the IlwanderingsJ  of the pollutant
molecules in the turbulent field of the atmosphere can be represented as a (grandam-walk19 and
therefore, the distribution of the pollutant molecules can be assumed to be approximately
Gaussian in three dimensions (Csanady, 1973). Third, the Gaussian form is also a solution to
both of the two basic turbulence theories: gradient transport theory and statistical theory of
turbulence (Gifford, 1968). Fourth, experimental diffusion studies employing tracer releases
indicate that the Gaussian functional form has wide applicability in representing atmospheric
turbulence and diffusion (Hay and Pasquill, 1957). Many alternate forms of the Gaussian model
are employed, but the main differences are in the exact form of the standard deviations (Singer,
1961).

The predictions obtained from using the Gaussian equation represent ensemble-mean
concentrations. For continuous sources, the theoretical ensemble mean concentration field is a
model representation of the realized time-average concentrations (Pasquill, 1962). The
ensemble-mean concentration field may be interpreted as the mean (expected value or first
moment) of all possible outcomes of a dispersion measurement taken under a specific set of
conditions, for example a l-hour TWA air concentration. An actual measured air concentration
obtained when the measurement is made in the field is only one realization of that theoretical set
of possible outcomes. Models have rlintrinsic  uncertaintiesj  (Venkatram, 1988) and field
measurements include various sources of measurement errors. This is why model predictions are
not expected to exactly match measured values in space and time (Zannetti, 1990).

The measured time-weighted average concentration will most often be a result of a series of
concentrations fluctuations. These fluctuations may be represented as a function composed of
sinusoidal components (Pasquill, 1962),  and the realized function depends on the distance from
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the source and the diffusive conditions. For a ground level source, the majority of the variation
of ground-level concentrations between samples of differing duration will essentially be a
function of the cross-wind spread (Pasquill 1962). The TWA concentrations at a fixed position
will depend upon the frequency of the corresponding wind directions during the measurement
period. The Gaussian bivariate distribution describing the average pattern is made up of shorter-
term periodic distributions that differ significantly from the mean (Singer, 196 1). Pasquill
(1962) observed that: IgIn reality the concentration at a fixed point is a fluctuating quantity, so
that even if the average level is harmless or tolerable it does not follow that this can be assumed
for the fluctuating concentration. ‘3 This observation is directly related to the problem of
estimating the peak concentration observed during a given longer duration averaging period.

Peak-to-Mean Estimation

Gaussian dispersion models predict time-averaged concentrations at fixed points for minimum
averaging times on the order of l/4 to 1 hr. The concentrations are actually random variables
with relatively small variances. However, at a fixed sampling point, as the averaging period is
shortened, the plume direction fluctuations, and therefore the variance of time-weighted average
air concentrations become larger. The range of observed concentrations also becomes larger. At
some point some short duration maximum concentration is reached with a frequency during a
longer time interval that is regarded as significantj. This concept is discussed and described in
the literature as the <peak-to-mean ratio. J Peak-to-mean ratios are directly related to the
magnitude of concentration fluctuations at a given fixed location.

Sutton (1947) distinguished between the rdinstantaneousl  and ggtime-mean’  aspects of a cloud or
plume. A pollutant plume section will be comparatively narrow with a high peak value on the
instantaneous axis. However, if measurements are made over longer periods, (e.g. several
minutes to hours) the curve of concentration across any section of the plume retains the same
general shape but is broader than the instantaneous curve and has a lower peak value. The
plume, in effect, swings over a wider region in response to longer period atmospheric eddies than
those which affect the instantaneous measurement. The mean concentration patterns are the
result of many short-term peak conditions and, therefore, a definable relationship exists between
the peaks and the mean (Singer 1961). Stewart et al. (1958) found that, for measurements taken
at or near the release height and sampling periods of about 3 minutes to one hour, the decrease in
mean concentration with increased sampling duration followed a l/5 power law.

Gifford (1959), with his fluctuating plume dispersion model, published the first major paper
addressing the modeling of the peak-to-mean concept. The fluctuating plume dispersion model
assumes the Gaussian form but the dispersion phenomenon is separated into a portion due to
instantaneous spreading of the plume in the crosswind (y) and vertical (z) directions, and a
portion due to meander of the entire plume about its mean position. Gifford (1960) observed that
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short term air concentrations can be an order of magnitude greater than the time weighted
average mean over a longer sampling period. Gifford (1960) also compared the theoretical
results from the fluctuating plume dispersion model with actual observations of peak-to-mean
concentration ratios. In general, he found good correspondence between the theoretical values
and those calculated from field data. For sources and centerline receptors at or near the same
height (e.g. both at ground level), peak-to-mean (Peak to Average (P/A) in Gifford (1960))
values are relatively small, about 1 to 5, even ratios of sampling times (average time/peak time)
spanning from 1 to 200. It can be shown that at large downwind (large travel time) distance the
peak-to-mean ratio (P/A) approaches a limit of 1 .O.

Hino (1968) found that the reduction of ground level concentrations with, increasing sampling
times, for time-weighted average sampling times ranging from 10 minutes to 5 hours, follows a -
l/2 power law, rather than the -l/5 power law that Stewart et al. (1958) had suggested. Hino
(1968) suggests that the -l/5 power law is valid only f&r average sampling times less than 10
minutes. Turner (1994) recommends the Hino (1968) -l/2 power law be used as the peak-to-
mean calculation method to estimate a peak short-term concentration associated with time
weighted averaged samples taken over 10 minute to 5 hours. Example peak-to-mean ratios from
Hino (1968), as presented in Turner (1994), are shown in Table 1. These peak-to-mean ratios are
in general agreement with the peak-to-mean ratios of 1 to 5 found by Gifford (1960).

It is a common and accepted practice to apply the peak-to-mean adjustment to the longer
averaging time mean air concentration prediction from Gaussian plume dispersion models in
order to estimate an expected peak concentration (The, J.L. per. comm.; Pope, R.J. and P.
Diosey 2000). Although Gaussian plume dispersion models can be used to predict ensemble
mean air concentration over periods as*short as 3 to 10 minutes, in most cases the prediction is
made on a one-hour basis because that is the resolution of the weather data (e.g. National
Weather Service or CIMIS weather data) (Turner 1994). The general equation to calculate the
-l/2 power law peak-to-mean adjusted concentration is given below:

cp = cm ( tp /tmy2

Where:

Cp = peak concentration over period, tp, of interest
C,,, = mean concentration over measurement period, tm
tp = duration of peak period of interest
tm = duration of mean measurement period

This generalized equation can be used to estimate peak concentrations of varying duration from
any mean concentration of 5 hours or less. This method for estimating a peak concentration
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from a mean concentration was developed by studying point source releases. A fumigant
application may be a point source (e.g., commodity fumigation chamber) or an area source (e.g.,
agricultural field soil injection). Areas source releases have not received the same level of study
as point source releases. There are no literature references discussing the general applicability of
the peak-to-mean estimation techniques to area sources. However, it is likely that application of
the peak-to-mean adjustments derived by the equation shown above to area sources will result in
conservative estimates of peak concentrations (biased high) (Johnson, B., per. comm.). Use of
these peak-to-mean estimation methods is recommended for fumigant area sources as well as for
fumigant point sources.
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Table 1. Peak to Mean Concentration Ratios from Hino (1968) as in Turner (1994).

Sampling Period Peak to One-Hour

One hour 1.0

30 Minutes 1.3

10 Minutes 2.3

3 Minutes 4.

1 Minute 4. to 7.

30 Seconds 4. to 10.
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