

Brian R. Leahv

Director

**Department of Pesticide Regulation** 



# MEMORANDUM

Edmund G. Brown Jr. Governor

- TO: Pamela Wofford Environmental Program Manager I Environmental Monitoring Branch
- FROM: Murray Clayton Original Signed by Research Scientist III Environmental Monitoring Branch 916-324-4095
- DATE: September 22, 2014
- SUBJECT: EVALUATION OF SOIL BULK DENSITY AND SOIL WATER STATUS IN FIELD STUDY ENTITLED "DIRECT FLUX DETERMINATION OF CHLOROPICRIN EMISSIONS FROM SHANK, BEDDED, NON-TARPED APPLICATIONS", DOCUMENT # 0199-0137.

### Summary

Evaluated was a field study conducted in Florida and submitted by the Chloropicrin Manufactures Task Force entitled "Direct Flux Determination of Chloropicrin Emissions from Shank, Bedded, Non-Tarped Applications". This evaluation assessed soil textural conditions for consistency between the field study site in Florida and soils in Fresno and Tulare Counties, California, soil bulk density and soil water status.

The field study report noted that the soil was analyzed to a depth of 18 inches. Textural classification was sand with a composition of up to 97% sand and 1 to 2% clay. Soil texture at the field study site in Florida was consistent with areas of Fresno and Tulare Counties, California where soils contain up to 96% sand.

Reported soil bulk density from the field study was considerably lower than that expected for undisturbed sand-textured soil. However, the bulk density was reported in the field study as being from 'disturbed' soil samples and presumably obtained of the pre-cultivated formed beds.

Soil moisture just prior to chloropicrin application was reported as >75% field capacity at the 6-12 inch depth as determined by the USDA Feel and Appearance method. A water balance procedure was utilized to evaluate soil moisture content during the field study. Based on conditions in Field #1, estimated soil moisture was relatively high from the period of chloropicrin application through to approximately 5 days post-application. Soil moisture conditions were dry for the following period until being restored by rain on day 10. Progressive drying of the soil occurred from days 10 to 14 after which the field study was concluded. Estimated soil moisture conditions at Field #2 were questionable as reported soil moisture content at field capacity was uncharacteristically low.

1001 | Street • P.O. Box 4015 • Sacramento, California 95812-4015 • www.cdpr.ca.gov

#### Discussion

The field study was conducted near Elkton, Florida at two sites approximately 950 meters apart. Air sampling was conducted over a 14 day period beginning on December 3, 2009.

#### Soil

Several soil parameters were characterized and presented in Table 6 of the field study report. In this table the USDA soil texture classification at both sites was reported as sand. One study site (Field #1) maintained a sand content of 97% from the surface to a 12-inch depth, then transitioned to 93% sand to the 18-inch depth. The other study site (Field #2) maintained a sand content of 97% to the full 18-inch depth. The clay content at these sites was 1 to 2% with the balance of the texture composition being silt. The high sand component of this soil is not untypical of some soils of California's Central Valley where intensive agriculture occurs. The area of interest in Figure 1 represents approximately 50,000 acres south of the city of Fresno. As can be observed a significant area contains soil with a sand content of 85.8 to 96%.

#### Soil Bulk Density

The field study utilized a non-tarped, bedded application method for chloropicrin with soil sealing accomplished using a bed shaper/compactor. Chloropicrin injection and bed shaping/compaction occurred simultaneously. Soil samples collected for characterization several hours before the chemical application and bed shaping/compaction were lost prior to analysis. Soil analyses presented in Table 6 of the field study report were from samples collected post chemical application. Presumably, these soil samples were collected directly from the treated bed because under soil bulk density analysis in Table 6 of the study report they were termed as being 'disturbed' soil samples. Soil bulk density reported in the study ranged from 1.26 to 1.32 g/cm<sup>3</sup> and 1.33 to 1.37 g/cm<sup>3</sup> for Fields #1 and #2, respectively. Despite the compaction of the bed during chemical application, these bulk density values were low and not consistent with those of undisturbed sand-textured soils. Korevaar et.al. (1983) reported bulk density for sand-textured soils to be approximately 1.6 g/cm<sup>3</sup>. Bulk density of an undisturbed soil in a recent Department of Pesticide Regulation field study conducted in Fresno County on a soil with a sand content of 96% ranged from 1.56 to 1.81 g/cm<sup>3</sup> (report not yet published).

#### Soil Moisture Status

A spreadsheet-based water balance was generated for each of Fields #1 and #2 to examine the soil-water content during the study period (December 3 to 16, 2009). The water balance operates on a daily time step and is based on procedures given by Allen et.al. (1988) for assessing water relations in bare ground. Daily water application or rainfall is partitioned into the components of evaporation and drainage and adjustments to soil-water content. The water balance centers on the

use of a reduction coefficient limiting evaporation when the soil-water content drops below a threshold. Required data for the water balance included initial soil moisture content, reference evapotranspiration, and volumetric water content at field capacity and wilting point. Field capacity and wilting point were measured data given in Table 6 of the field study report, averaging 4.1% and 1.9%, respectively for Field #1, and 2.1% and 1.7%, respectively for Field #2. Reference evapotranspiration for the period in question was obtained from the Florida Automated Weather Network station in Hastings, Florida, approximately 3.5 miles from the study site. Initial moisture content was given in the field study report and determined from the USDA Feel and Appearance method to be greater than 75% field capacity.

For Field #1 total rainfall amounted to 67.1 mm, which was partitioned into 19.6 mm of evaporation, 52.9 mm of drainage below the estimated soil evaporative depth of 0.3 m, and 5.4-mm change in soil moisture content. Overall, estimated soil moisture content was high for the first 3 days of the study due to rainfall and then gradually declined to the wilting point by day 9. Soil moisture was restored on day 10 by rainfall to then gradually decline to the wilting point by day 14 (Figure 2).

For Field #2 total rainfall was again 67.1 mm, which was partitioned into 12.5 mm of evaporation, 57.5 mm of drainage, and 2.9-mm change in soil moisture content. Overall, estimated soil moisture content was low relative to the wilting point. Unlike Field #1, reported soil moisture content at field capacity was extremely low at 2.1%, which was not consistent with the value estimated by the USDA ARS soil water characteristics index for a loose packed sand-textured soil of 7.0%. With moisture content at the wilting point reported at 1.7%, very little water was available for evaporation. Consequently, wilting point or drier soil moisture conditions were estimated during most of the field study period (Figure 3).

## Conclusions

Soil textural composition at the field study site was representative of some extensive agricultural areas in California's Central Valley. A low soil bulk density at the field study site was not consistent with undisturbed sand-textured soils. However, reported values were from disturbed soil samples and therefore possibly obtained directly from the pre-cultivated, formed beds. Soil moisture content at Field #1 was initially high during chloropicrin application and for the following 3 days, but then gradually depleted until being restored on day 10 by rainfall. Estimated soil moisture content at Field #2 are questionable due to an unusually low reported value for soil moisture content at field capacity.

## References

Koorevaar, P., G. Menelik and C. Dirksen. 1983. Elements of soil physics. Developments in Soil Science 13, 3<sup>rd</sup> ed., vol 13. Elsevier Science Publishers, Netherlands.

Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.



Figure 1. USDA NRCS soils map of south-eastern Fresno County and northern Tulare County, California depicting the cities of Fowler in the north-west, Selma in the south and Parlier in the east. Area of interest represents approximately 50,000 acres and illustrates the sand content of the top soil. Mapping data: <<u>http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</u>>.

| << Enter a     | onronria                                       | te values int                                  | o boxed (    | cells >>    |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|----------------|------------------------------------------------|------------------------------------------------|--------------|-------------|-----------------|-----------------|-------------------|----------------------------|------------------|-------------------|----------------|-------------------|------------|----------------|----------------|----------------|
| Water bala     | ince for                                       | chloropicrin                                   | study, El    | kton, Flor  | ida. Chlo       | ropicrin 100    | Plot Field #1, Po | omona fine s               | and series.      | Irrig/rain occ    | urs at start   | of day.           |            |                |                |                |
| Depth of so    | il layer su                                    | ubject to proce                                | esses of ev  | aporation   | is 300 mm       | n FC theta est  | at 0.041, WP the  | ta est at 0.01             | 9, OM est at 1   | .2%.              |                |                   |            |                |                |                |
| TEW =          | 9.45 (total evaporable w ater) Stage 1 = REW ( |                                                |              |             |                 |                 | (energy is lim    | energy is limiting factor) |                  |                   |                |                   |            |                |                |                |
| REW =          | 4.92218                                        | 18 (readily evaporable water) Stage 2 = TEW-RI |              |             |                 |                 |                   | REW (soil moi              | isture content   | is limiting facto | or)            |                   |            |                |                |                |
| Kc max =       | 1.05                                           | (see below)                                    |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| Kcb =          | 0                                              | (see below)                                    |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| Kc max=ma      | ximum cr                                       | op coefficient                                 | as influen   | ced by wa   | ter application | ation frequenc  | y which ranges t  | from 1.05 - 1.             | 2 w hen grass    | is the ETo. For   | r infrequent v | / aterings >4 day | s apart us | 1.2; for 1-4 c | days apart use | e 1.05 to 1.15 |
| Kcb=basial     | crop coe                                       | fficient is the                                | ratio of cro | p evapotra  | anspiratior     | over the refe   | rence evapotran   | spiration (ETc             | /ETo). For ba    | re soil Kcb=0.    |                |                   |            |                |                |                |
| Kr=evapora     | ition redu                                     | ction coefficie                                | nt           |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| Ke=soil eva    | poration                                       | coefficient = F                                | ic max - Ko  | cb(basial c | rop coeff       | cient). For bar | e soil Kcb=0. The | erefore, wher              | n soil moisture  | is not limiting K | le=kc max.     |                   |            |                |                |                |
| Ke ET o=dai    | y evapot                                       | ranspiration                                   |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| drainage=      | daily wat                                      | er movement l                                  | pelow 300    | mm          |                 | total evpot     | ranspiration      | total water a              | pplication       | total drainage    | •              |                   |            |                |                |                |
| ETo=refere     | nce evap                                       | otranspiration                                 |              |             |                 | 19.6            | <b>F</b> (7)      | 67.1                       |                  | 52.9              |                |                   |            |                |                |                |
| Initial soil w | ater deple                                     | etion (cell H14                                | ) based on   | study rep   | ort of wat      | er content at : | > (7)             |                            |                  | (m)               |                |                   |            |                |                |                |
|                | (1)                                            | (2)                                            | (3)          | (4)         | (5)             | (6)             | Depl end mm       |                            |                  | (8)               |                |                   |            |                |                |                |
|                |                                                | De al esterat                                  |              |             |                 |                 |                   |                            |                  | predicted         |                |                   |            |                |                |                |
| data           | day                                            | Depistant                                      |              | ¥-          | Ka              | KaFTamm         | 1.0               | irria mm                   | rain mm          | uranaye           | FT a mm        |                   |            |                |                |                |
| 12/02/00       | uay                                            | 10                                             | stage        | 1.00        | 1.05            | A C             | 1.9               | 0.0                        |                  | 0.0               | 1.5            |                   |            |                |                |                |
| 12/03/09       | 2                                              | 1.9                                            | 1            | 1.00        | 1.05            | 1.0             | 3.5               | 0.0                        | 20.1             | 16.6              | 1.5            |                   |            |                |                |                |
| 12/04/03       | 3                                              | 0.0                                            | 1            | 1.00        | 1.05            | 13              | 1.1               | 0.0                        | 20.1             | 25.1              | 1.0            |                   |            |                |                |                |
| 12/06/09       | 4                                              | 1.3                                            | 1            | 1.00        | 1.05            | 13              | 2.7               | 0.0                        | 20.2             | 0.0               | 1.3            |                   |            |                |                |                |
| 12/07/09       | 5                                              | 2.7                                            | 1            | 1.00        | 1.05            | 1.3             | 40                | 0.0                        | 0                | 0.0               | 1.3            |                   |            |                |                |                |
| 12/08/09       | 6                                              | 4.0                                            | 1            | 1.00        | 1.05            | 1.6             | 5.6               | 0.0                        | 0                | 0.0               | 1.5            |                   |            |                |                |                |
| 12/09/09       | 7                                              | 3.3                                            | 1            | 1.00        | 1.05            | 19              | 5.2               | 0.0                        | 23               | 0.0               | 1.8            |                   |            |                |                |                |
| 12/10/09       | . 8                                            | 5.2                                            | 2            | 0.95        | 0.99            | 1.5             | 6.7               | 0.0                        | 0                | 0.0               | 1.5            |                   |            |                |                |                |
| 12/11/09       | 9                                              | 6.7                                            | 2            | 0.61        | 0.64            | 0.7             | 7.3               | 0.0                        | 0                | 0.0               | 1.0            |                   |            |                |                |                |
| 12/12/09       | 10                                             | 0.0                                            | 1            | 1.00        | 1.05            | 1.3             | 1.3               | 0.0                        | 18.5             | 11.2              | 1.3            |                   |            |                |                |                |
| 12/13/09       | 11                                             | 1.3                                            | 1            | 1.00        | 1.05            | 1.9             | 3.2               | 0.0                        | 0                | 0.0               | 1.8            |                   |            |                |                |                |
| 12/14/09       | 12                                             | 3.2                                            | 1            | 1.00        | 1.05            | 1.6             | 4.8               | 0.0                        | 0                | 0.0               | 1.5            |                   |            |                |                |                |
| 12/15/09       | 13                                             | 4.8                                            | 1            | 1.00        | 1.05            | 1.6             | 6.4               | 0.0                        | 0                | 0.0               | 1.5            |                   |            |                |                |                |
| 12/16/09       | 14                                             | 6.4                                            | 2            | 0.67        | 0.71            | 0.9             | 7.3               | 0.0                        | 0                | 0.0               | 1.3            |                   |            |                |                |                |
|                |                                                |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                |                                                |                                                |              |             |                 |                 | 1                 |                            |                  |                   |                |                   | 7          |                |                |                |
|                |                                                |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                |                                                | Post chloropicrin treatment (Days)             |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                |                                                | 1 2 3 4 5 6 7 8 9 10 11 12 13 14               |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                | 0 +                                            |                                                |              |             |                 |                 |                   | — <b>—</b> I               | - Field canacity |                   |                |                   |            |                |                |                |
|                | 1                                              |                                                |              |             |                 |                 |                   |                            |                  | -,                |                |                   |            |                |                |                |
|                | 1                                              |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                | 2 †                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                | 3 +                                            |                                                |              |             | ~               |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| - Ē            | 4 +                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| Ĕ              | 5 -                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| 음              | 6                                              |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                | <u> </u>                                       |                                                |              |             |                 | V               |                   | 🔨 🔶 I                      | st. wilting      | point (6.6 m      |                |                   |            |                |                |                |
| de l           | 7 †                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| e              | 8 +                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
| vat            | 9 +                                            |                                                |              |             |                 |                 |                   |                            |                  |                   |                | (0.45             |            |                | -              |                |
|                | 10 +                                           |                                                |              |             |                 |                 |                   | _ +- •                     | st. limit of     | soil-watere       | vaporatio      | n (9.45 mm)       |            |                | -              |                |
| S              | 11                                             |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                | -              |                |
|                | 11                                             |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                | -              |
|                | 12 +                                           |                                                |              |             |                 |                 |                   | — 🔶 i                      | st. total so     | il water (12.     |                |                   |            |                |                |                |
|                | 13 🗆                                           | 1                                              |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |
|                |                                                |                                                |              |             |                 |                 |                   |                            |                  |                   |                |                   |            |                |                |                |

Figure 2. Water balance for Chloropicrin 100 plot at Field #1. Plotted estimates of soil water depletion are for the early morning period of each day. Values for total evaporable water (TEW) and readily evaporable water (REW) based on field capacity and wilting point values given in field study report and on an estimated evaporable depth of 0.3 m. Reference evapotranspiration (ETo) obtained from Florida Automated Weather Network station in Hastings, Florida, approximately 3.5 miles from the study site. Calculation procedures given by Allen et.al. (1998).

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------|---------------|--------------|--------------|-----------------|-------------------|------------------|-----------------------------|-------------------|--------------|-----------------|------------|----------------|----------------|-----------------|
| << Enter ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | propria    | te values int                                      | o boxed o     | ells >>      |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| Water bala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nce for    | chloropicrin                                       | study, El     | ton, Flor    | ida. Pic P   | lus plot Field  | #2, Tocol fine    | sand series.     | Irrig/rain o                | ccurs at start    | of day.      |                 |            |                |                |                 |
| Depth of so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | il subject | to processes                                       | of evapora    | ation is 300 | 0 mm. FC t   | heta est at 0.0 | 21, WP theta est  | at 0.017, OM     | est at 1.0%.                |                   |              |                 |            |                |                |                 |
| IEW =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.75       | 3.75 (total evaporable w ater) Stage 1 = REW (     |               |              |              |                 |                   | (energy is limit | energy is limiting factor)  |                   |              |                 |            |                |                |                 |
| REW =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20866    | 2.20866 (readily evaporable water) Stage 2 = TEW-F |               |              |              |                 | REW (soil mois    | sture content    | is limiting facto           | r)                |              |                 |            |                |                |                 |
| Kc max =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05       | (see below)                                        |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| Kcb =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          | (see below)                                        |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| Kc max=ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ximum cr   | op coefficient                                     | as influend   | ed by wa     | iter applica | ation frequenc  | y which ranges    | from 1.05 - 1.2  | when grass                  | is the Elo. For   | infrequent w | aterings >4 day | s apart us | 1.2; for 1-4 d | days apart use | e 1.05 to 1.15. |
| Kcb=basial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | crop coe   | ficient is the i                                   | atio of cro   | p evapotra   | anspiratior  | over the refe   | rence evapotran   | spiration (ETc/  | Elo). For ba                | re soil Kcb=0.    |              |                 |            |                |                |                 |
| Kr=evapora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion redu  | ction coefficie                                    | nt            |              |              |                 | 144 1 0 7         |                  |                             |                   |              |                 |            |                |                |                 |
| Ke=soli eva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | poration   | coerricient = r                                    | C max - Ko    | b(basiai c   | rop coern    | cient). For bar | e soil Kcb=0. The | ererore, when    | soli moisture               | is not limiting K | e=kc max.    |                 |            |                |                |                 |
| Re El O=dall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y evapou   | anspiration                                        |               |              |              | 4 - 4 - 1 4     |                   | 4-4-1            |                             |                   |              |                 |            |                |                |                 |
| To reference events and the second se |            |                                                    |               |              |              |                 |                   |                  | pplication                  | total drainage    |              |                 |            |                |                |                 |
| ETU=rererer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ice evap   |                                                    | hasod on      | study rop    | ort of wat   | IZ.3            | (7)               | 07.1             |                             | 57.5              |              |                 |            |                |                |                 |
| initial SOI wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)        | (2)                                                | (2)           | (A)          | /5)          |                 | Dopl and mm       |                  |                             | (9)               |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)        | (2)                                                | (3)           | (4)          | (3)          | (0)             | Deprendimin       |                  |                             | (0)               |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Deni start                                         |               |              |              |                 |                   |                  | 1                           | drainage          |              |                 |            |                |                |                 |
| date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dav        | mm                                                 | etano         | Kr           | Ko           | KeFTo mm        | 0.9               | irria mm         | rain mm                     | mm                | FTo mm       |                 |            |                |                |                 |
| 12/03/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | 0.9                                                | 1             | 1.00         | 1.05         | 16              | 2.5               | 0.0              | 0                           | 0.0               | 15           | · · · · ·       |            |                |                |                 |
| 12/04/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2          | 0.0                                                | 1             | 1.00         | 1.05         | 1.1             | 1.1               | 0.0              | 20.1                        | 17.6              | 1.0          |                 |            |                |                |                 |
| 12/05/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3          | 0.0                                                | 1             | 1.00         | 1.05         | 1.3             | 1.3               | 0.0              | 26.2                        | 25.1              | 1.3          |                 |            |                |                |                 |
| 12/06/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          | 1.3                                                | 1             | 1.00         | 1.05         | 1.3             | 2.7               | 0.0              | 0                           | 0.0               | 1.3          |                 |            |                |                |                 |
| 12/07/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5          | 2.7                                                | 2             | 0.70         | 0.74         | 0.9             | 3.6               | 0.0              | 0                           | 0.0               | 1.3          |                 |            | 1              |                |                 |
| 12/08/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6          | 3.6                                                | 2             | 0.09         | 0.10         | 0.1             | 3.8               | 0.0              | 0                           | 0.0               | 1.5          |                 |            |                |                |                 |
| 12/09/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7          | 1.5                                                | 1             | 1.00         | 1.05         | 1.9             | 3.3               | 0.0              | 2.3                         | 0.0               | 1.8          |                 |            |                |                |                 |
| 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8          | 3.3                                                | 2             | 0.28         | 0.30         | 0.4             | 3.8               | 0.0              | 0                           | 0.0               | 1.5          |                 |            |                |                |                 |
| 12/11/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 3.8                                                | 2             | 0.00         | 0.00         | 0.0             | 3.8               | 0.0              | 0                           | 0.0               | 1.0          |                 |            |                |                |                 |
| 12/12/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10         | 0.0                                                | 1             | 1.00         | 1.05         | 1.3             | 1.3               | 0.0              | 18.5                        | 14.8              | 1.3          |                 |            |                |                |                 |
| 12/13/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11         | 1.3                                                | 1             | 1.00         | 1.05         | 1.9             | 3.2               | 0.0              | 0                           | 0.0               | 1.8          |                 |            |                |                |                 |
| 12/14/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12         | 3.2                                                | 2             | 0.36         | 0.37         | 0.5             | 3.8               | 0.0              | 0                           | 0.0               | 1.5          |                 |            |                |                |                 |
| 12/15/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13         | 3.8                                                | 2             | 0.00         | 0.00         | 0.0             | 3.8               | 0.0              | 0                           | 0.0               | 1.5          |                 |            |                |                |                 |
| 12/16/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14         | 3.8                                                | 2             | 0.00         | 0.00         | 0.0             | 3.8               | 0.0              | 0                           | 0.0               | 1.3          |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    | Post          | hloronic     | rin treat    | ment (Davs)     |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1 7 2                                              | 4 5           | <br>د        | 7 0          | 0 10 1          | 1 12 12 1         | 4                |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1 2 5                                              | 4 5           |              | / 0          | 9 10 1          | 1 12 15 1         | .4               |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 +        |                                                    |               |              |              |                 |                   | — 🔶 Fi           | eld capaci                  | ty                |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 +        | •                                                  |               |              |              | -+              |                   |                  | Est. wilting point (1.2 mm) |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              | ٨            |                 |                   | ES               |                             |                   |              |                 |            |                |                |                 |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 -        |                                                    | $\rightarrow$ |              | Δ            |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -          |                                                    |               | /            |              |                 | 1                 |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| eti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3          |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| e d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                    |               | V            |              | <b>J</b>        |                   | Ec               | t limit of                  | oil_waterey       | anoration    | (3.75 mm)       |            |                |                |                 |
| - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 -        |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J          |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   | ES               |                             |                   |              |                 |            |                |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 🗕        |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            | -              |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                    |               |              |              |                 |                   |                  |                             |                   |              |                 |            | 1              |                |                 |

Figure 3. Water balance for Pic Plus plot at Field #2. Plotted estimates of soil water depletion are for the early morning period of each day. Values for total evaporable water (TEW) and readily evaporable water (REW) based on field capacity and wilting point values given in field study report and on an estimated evaporable depth of 0.3 m. Reference evapotranspiration (ETo) obtained from Florida Automated Weather Network station in Hastings, Florida, approximately 3.5 miles from the study site. Calculation procedures given by Allen et.al. (1998).