EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 1 of 12

Determination of Bentazon in Ground water using Gas Chromatography/MSD

1. Scope:

This section method (SM) is applicable for the determination of Bentazon in ground water with a reporting limit of 0.05 ppb and is to be used by all authorized section personnel.

2. Principle:

The ground water sample is acidified to pH less than 2 then extracted with methyl tertiary butyl ether. The extract is evaporated on a rotary evaporator and nitrogen evaporator and to a final volume of 1.0 mL with acetone. The extract is then methylated with diazomethane and analyzed by a gas chromatograph equipped with a mass selective detector (MSD).

- 3. Safety:
 - 3.1 All general laboratory safety rules for sample preparation and analysis shall be followed.
 - 3.2 All solvents should be handled with care in a ventilated area.
- 4. Interferences:

There are matrix interferences that cause quantitative problems. Therefore, the calibration standards will be made up in appropriate matrix.

- 5. Apparatus and Equipment:
 - 5.1 Rotary evaporator (Büchi/Brinkman or equivalent)
 - 5.2 Nitrogen evaporator (Meyer N-EVAP Organomation Model # 112 or equivalent)
 - 5.3 Vortex-vibrating mixer
 - 5.4 Stir plate
 - 5.5 Balance (Mettler PC 4400) or equivalent
 - 5.6 Gas Chromatograph equipped with a mass selective detector (MSD)
- 6. Reagents and Supplies

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 2 of 12

- 6.1 Methyl tertiary butyl ether (MTBE), nanograde or equivalent pesticide grade
- 6.2 Acetone, nanograde or equivalent pesticide grade
- 6.3 Hydrochloric acid, ACS grade
- 6.4 Diazomethane prepared from Diazald
- 6.5 Bentazon CAS# 25057-89-0
- 6.6 Conical tube with glass stopper, 15-mL graduated, 0.1 mL subdivision
- 6.7 Separatory funnel, 1 L
- 6.8 Boiling flask, 250 mL
- 6.9 Disposable Pasteur pipettes, and other laboratory ware as needed
- 6.10 Recommended analytical column:

For MSD - 5% phenyl Methylsilicone (HP-5ms or equivalent) fused silica column, 30 m x 0.25 mm x 0.25 μ m film thickness.

- 7. Standards Preparation:
 - 7.1 Dilute the 1 mg/mL Bentazon standard obtained from the CDFA/CAC Environmental Analysis Standards Repository with acetone to make up a series of mixed working standards (see 10.2). These standards shall be prepared to cover the linear range from 0.02 μg/mL to 1.0 μg/mL.
 - 7.2 The calibration standards are added to matrix blank extracts (9.1.2.1) to correct for matrix background interference.
 - 7.3 Store standards according to manufacturing requirement. Keep all standards in designated refrigerator for storage.
 - 7.4 The expiration date of each mixed working standard is six months from the preparation date or same as stock standards, if sooner.
- 8. Sample Preservation and Storage:

All water samples and sample extracts shall be stored in the refrigerator (4 ± 3 °C).

- 9. Test Sample Preparation:
 - 9.1 Sample Preparation

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 3 of 12

- 9.1.1 Remove samples from refrigerator and allow samples to come to room temperature before extraction.
- 9.1.2 Preparation of matrix blank and matrix spike:

The Department of Pesticide Regulation (DPR) provides the background water for matrix blank and spikes.

- 9.1.2.1 Matrix blank: Weigh out 400 g of background water and follow the test sample extraction procedure.
- 9.1.2.2 Matrix spike: Weigh out 400 g of background water. Spike a client requested amount of bentazon into the background water and let it stand for 1 minute. Follow the test sample extraction procedure.
- 9.2 Test Sample Extraction
 - 9.2.1 Weight out 400 g of the sample and transfer into a 600mL beaker.
 - 9.2.2 Adjust the pH of the sample to <2 with 6N Hydrochloric acid.
 - 9.2.3 Stir rapidly on a stir plate with 75 ± 5 mL of MTBE for 2 minutes.
 - 9.2.4 Transfer contents of beaker to a 1 liter separatory funnel.
 - 9.2.5 After phases have separated, drain lower water layer back into beaker. Transfer the organic layer into a 250mL boiling flask
 - 9.2.6 Repeat steps 9.2.3 to 9.2.5 two more times using 60 ± 5 mL of MTBE each time.
 - 9.2.7 Evaporate the sample extract to 2 4 mL on a rotary evaporator using a water bath at 40 \pm 2 °C and 15 20 inch Hg vacuum. Transfer the extract to a calibrated 15 mL graduated test tube.
 - 9.2.8 Rinse flask 3 more times with 2 4 mL of MTBE and transfer each rinse to the same test tube. Let the tubes sit for several hours in a refrigerator to allow the remaining water in the extract to settle on the bottom of the tube.

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 4 of 12

- 9.2.9 Remove the tubes from the refrigerator and remove remaining water from the tube using a disposable pipette.
- 9.2.10 Evaporate the extract to a volume slightly less than 1 mL in a water bath at 40 ± 5 °C under a gentle stream of nitrogen.
- 9.2.11 Add approxametly 1 mL of diazomethane to each sample, spike, blank and standards. Allow to sit for 15 to 20 minutes to methylate the bentazon. The yellow color of the diazomethane should be evident and persist for this period.
- 9.2.12 Evaporate the extract to approximately about 0.5 mL in a water bath at 35 ± 5 °C under a gentle stream of nitrogen to remove any remaining diazomethane. Then bring to a final volume of 1.0 mL with acetone, mix well and transfer into an auto sampler vial.
- 9.2.13 Submit extract for GC/MS analysis.
- 10. Instrument Calibration:
 - 10.1 The calibration standards are added to a matrix blank extract to correct for matrix background interference.
 - 10.2 A calibration standard curve consists of minimum of three levels. Standard concentrations of 0.02, 0.10, 0.20, 0.50, and 1.00 μg/μL are recommended. Calibration is obtained using a linear or quadratic regression with the correlation coefficient (r) equal to or greater than 0.995.
- 11. Analysis:
 - 11.1 Injection Scheme

Recommended injection scheme: calibration standards, Solvent, QC samples, Test Samples and Calibration standards. Injection an old sample or matrix blank before the sequence analysis to condition the instrument is recommended.

11.2 GC Instrumentation

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 5 of 12

- 11.2.1 Analyze bentazon by a gas chromatograph equipped with mass selective detector.
- 11.2.2 Recommended instrument (GC/MSD) parameters: Injector 250 °C; detector 250 °C; oven temperature 80 °C (hold 2 min.) to 180 °C @ 20 °C/min. to 280 °C @ 6 °C/min. (hold 6 min.); injection volume 3 μL.

Ions Selected for SIM Acquisition: Bentazon **212**, 105, 133, 254 (Quantitation ion in bold)

12. Quality Control:

- 12.1 Each set of samples shall have at a minimum one matrix blank one matrix spike sample.
- 12.2 The matrix blank should be free of target compounds above the reporting level.
- 12.3 The recoveries of the matrix spike shall be within the control limits.
 - 12.3.1 When spike recoveries fall outside the control limits, the chemist must investigate the cause. The entire extraction set of samples may be re-analyzed. If the spike recoveries fall within the limit, then the results from the re-analyzed samples shall be reported.
 - 12.3.2 If the spike recoveries still fall outside the control limits, the client will be notified. The backup samples will be extracted and analyzed.
- 12.4 The retention time should be within ± 2 percent of that of the standard.
- 12.5 The sample must be diluted if results fall outside the linear range of the standard curve.
- 12.6 Bracketing standard curves should have a percent change less than 20 %.

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 6 of 12

12.7 Method Detection Limits (MDL)

The method detection limit refers to the lowest concentration of analyte that a method can detect reliably. To determine the MDL, 7 replicate water samples are spiked at 0.05 ppb. The standard deviation from the spiked sample recoveries are used to calculate the MDL for each analyte using the following equation:

MDL = tS

Where t is the Student t test value for the 99% confidence level with n-1 degrees of freedom and S denotes the standard deviation obtained from n replicate analyses. For the n=7 replicate used to determine the MDL, t=3.143.

12.8 Reporting limit (RL):

The reporting limit (RL) refers to the level at which reliable quantitative results may be obtained. The MDL is used as a guide to determine the RL. Per client agreement, the RL is chosen in a range 1-5 times the MDL except in special cases.

MDL data and the RL are tabulated in Appendix IA and IB.

- 12.9 Method Validation Recovery Data and Control Limits:
 - 12.9.1 The method validation consisted of three sample sets. Each set included five levels of fortification (0.02, 0.1, 0.2, 0.5, and 1.0 ppb) and a method blank. All spikes and method blank samples were processed through the entire analytical method.
 - 12.9.2 Upper and lower warning and control limits are set at \pm 2 and \pm 3 standard deviations of the average % recovery, respectively

Method validation results and control limits are tabulated in Appendix IIA and IIB.

12.10 Estimated Measurement Uncertainty:

Total uncertainty for this method is 16% at 95% confidence interval.

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 7 of 12

12.11 Trend Identification

12.11.1 All matrix spike recoveries for phenoxy herbicides analysis will be put into control charts and monitored for trends. Three trend characteristics will be evaluated at least bi-yearly by the supervisor or designee.
2 of 3 points above or below 2/3 of the UCL or LCL.

7 continuous points above or below the center line (CL) 14 points alternating above and below the CL.

- 12.11.2 When results indicate an out of control situation the supervisor or designee will indicate this on the control chart and take appropriate corrective action, which may include monitoring the results more closely to initiating a formal corrective action with root cause investigation.
- 13. Calculations:

Quantitation is based on external standard (ESTD) calculation using either the peak area or height. The software uses a linear or quadratic curve fit, with all levels weighted equally. Alternatively, at chemist discretion, concentrations may be calculated using the response factor for the standard whose value is closest to the level in the sample.

14. Reporting Procedure:

14.1 Identification of Analyte

For responses within calibration range, compare the retention time of the peaks with the retention time of standards. For positive results retention times shall not vary from the standards more than 2 percent.

14.2 Sample results are reported out according to the client's analytical laboratory specifications.

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 8 of 12

15. Discussion and References:

15.1 Sample response and quantitation vary depending on matrix background in the samples. The calibration standards were added to a matrix blank extract to correct for matrix background interference.

16. References:

16.1 EPA Method 8151A, Chlorinated Herbicides By GC using Methylation Derivatization. Test methods for Evaluating Solid Waste, 1986

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 9 of 12

APPENDIX IA

The determination of Method Detection Limit (MDL) data and Reporting Limit (RL)

Sample ID	Bentazon				
MDL #1	0.059				
MDL #2	0.057				
MDL #3	0.056				
MDL #4	0.069				
MDL #5	0.065				
MDL #6	0.066				
MDL #7	0.067				
SD	0.005251				
SD* 3.143	0.016503				
MDL	0.017				
RL	0.050				

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 10 of 12

APPENDIX IIA

Sample ID	Spike	Set 1	%	Set 2	%	Set 3	%	Control Limit
	level		Rec.		Rec.		Rec	
Bentazon	0.0200	0.0209	104.5	0.0224	112.0	0.0175	87.5	Mean:100.9 SD 21.9
	0.1000	0.1241	124.1	0.1415	141.5	0.1277	127.7	UCL: 166.6
	0.2000	0.1729	86.5	0.1966	98.3	0.1905	95.3	UWL: 144.7
	0.5000	0.4032	80.6	0.4724	94.5	0.4191	83.8	LWL: 57.1
	1.0000	0.6894	68.9	1.3210	132.1	0.7731	77.3	LCL: 35.2

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 11 of 12

Written BY:

Stephen Siegel Sr. Environmental Scientist Date

Approved By:

Stephen Siegel Sr. Environmental Scientist

Approved By:

Elaine Wong Environmental Program manager I Date

Date

EM 5.5 Revision: 1 Revision Date: 10/22/2015 Original Date: 06/08/1989 Page 12 of 12

Revision Log:

Date	What was Revised? Why?
-	